(本小题满分12分)在数列中,;
(1)设,求证数列是等比数列;
(2)设,求证:数列是等差数列;
(3)求数列的通项公式及前n项和的公式。
(1)见解析;(2)见解析;(3)。
【解析】
试题分析:(1)因为,那么类推得到,两式作差得到关系式,进而求解其bn
(2)∵是等比数列,且首项为4,公比为2,所以 整体的思想作差来判定是否为等差数列。
(3)在前两问的基础上得到,然后运用错位相减法得到求和。
(1)∵…①,∴…②,②-①得,
,又≠0,
∴是等比数列。
(2)∵是等比数列,且首项为4,公比为2,所以 ;
∴,
∴数列是等差数列;
(3)∵是等差数列,∴,∴ ,
∴。
考点:本题主要考查数列的递推公式在数列的通项公式的求解中的应用,等差数列的通项公式的求解及错位相减求和方法的应用.
点评:解决该试题的关键是能根据已知的前n项和与其通项公式的关系式,得到其通项公式的结论,同时能准确的运用错位相减法求和的运用。
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com