精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求直线的普通方程及曲线的直角坐标方程;

(2)设点,直线与曲线相交于两点,求的值.

【答案】(1) 的普通方程为;曲线的直角坐标方程 (2)

【解析】

(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)将直线的参数方程代入曲线的直角坐标方程,可得,再利用一元二次方程根和系数的关系,利用直线参数方程t的几何意义求出结果.

解:(1)直线的普通方程为

因为

所以

,代入上式,

可得

(2)将直线的参数方程代入曲线的直角坐标方程,

可得

两点所对应的参数分别为

于是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)将的方程化为普通方程,将的方程化为直角坐标方程;

(Ⅱ)已知直线的参数方程为为参数,且交于点交于点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】沉鱼、落雁、闭月、羞花是由精彩故事组成的历史典故.沉鱼,讲的是西施浣纱的故事;落雁,指的就是昭君出塞的故事;闭月,是述说貂蝉拜月的故事;羞花,谈的是杨贵妃醉酒观花时的故事.她们分别是中国古代的四大美女.某艺术团要以四大美女为主题排演一部舞蹈剧,已知乙扮演杨贵妃,甲、丙、丁三人抽签决定扮演的对象,则甲不扮演貂蝉且丙扮演昭君的概率为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点,斜率为1的直线与抛物线交于点,且.

(1)求抛物线的方程;

(2)过点作直线交抛物线于不同于的两点,若直线分别交直线两点,求取最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:实数m满足使方程1,其中a0为双曲线:命题q:实数m满足

1)若a1pq为真,求实数m的取值范围;

2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为研究学生语言学科的学习情况,现对高二200名学生英语和语文某次考试成绩进行抽样分析. 将200名学生编号为001,002,…,200,采用系统抽样的方法等距抽取10名学生,将10名学生的两科成绩(单位:分)绘成折线图如下:

(Ⅰ)若第一段抽取的学生编号是006,写出第五段抽取的学生编号;

(Ⅱ)在这两科成绩差超过20分的学生中随机抽取2人进行访谈,求2人成绩均是语文成绩高于英语成绩的概率;

(Ⅲ)根据折线图,比较该校高二年级学生的语文和英语两科成绩,写出你的结论和理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点是椭圆上的一个动点,当直线的斜率等于时,轴.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点且斜率为的直线与直线相交于点,试判断以为直径的圆是否过轴上的定点?若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)将的方程化为普通方程,将的方程化为直角坐标方程;

(Ⅱ)已知直线的参数方程为为参数,且交于点交于点,且,求的值.

查看答案和解析>>

同步练习册答案