精英家教网 > 高中数学 > 题目详情
命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=
|x-1|-2
的定义域是(-∞,-1]∪[3,+∞),则(  )
A、“p或q”为假
B、“p且q”为真
C、p真q假
D、p假q真
分析:若|a|+|b|>1,不能推出|a+b|>1,而|a+b|>1,一定有|a|+|b|>1,故命题p为假.又由函数y=
|x-1|-2
的定义域为x∈(-∞,-1]∪[3,+∞),q为真命题.
解答:解:∵|a+b|≤|a|+|b|,
若|a|+|b|>1,不能推出|a+b|>1,而|a+b|>1,一定有|a|+|b|>1,故命题p为假.
又由函数y=
|x-1|-2
的定义域为|x-1|-2≥0,即|x-1|≥2,即x-1≥2或x-1≤-2.
故有x∈(-∞,-1]∪[3,+∞).
∴q为真命题.
故选D.
点评:本题考查复合命题的真假,解题时要注意公式的灵活运用,熟练掌握复合命题真假的判断方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题p:若a、b∈R,|a|+|b|>1  则|a+b|>1.
命题q:等轴双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
中a=b.
则以上两个命题中(  )
A、“p或q”为假
B、“p且q”为真
C、p真q假
D、p假q真

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:若a,b∈R,则ab=0是a=0的充分条件,命题q:函数y=
x-3
的定义域是[3,+∞),则“p∨q“,“p∧q“,“¬p“中是真命题的个数为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:若a、b∈R,则|a+b|<1是|a|+|b|<1的充分而不必要条件;命题q:函数y=
|x+1|-2
的定义域是(-∞,-3]∪[1,+∞).则(  )
A、“p或q”为假命题
B、“p且q”为真命题
C、p为真命题,q为假命题
D、p为假命题,q为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

命题 P:若 a,b∈R,则|a|+|b|>1 是|a+b|>1 的充分不必要条件;命题 q:不等式|
x
x-1
|>
x
x-1
的解集为 {x|0<x<1},则(  )

查看答案和解析>>

同步练习册答案