【题目】下列推理过程不是演绎推理的是( ).
①一切奇数都不能被2整除,2019是奇数, 2019不能被2整除;
②由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方;
③在数列中,,,由此归纳出的通项公式;
④由“三角形内角和为”得到结论:直角三角形内角和为 .
A. ① ② B. ② ③ C. ③ ④ D. ②④
【答案】B
【解析】分析: 演绎推理的模式是三段论模式,包括大前提,小前提和结论,演绎推理的特点是从一般到特殊,根据上面的特点,判断下面四个结论是否正确,结果③是一个归纳推理,②是一个类比推理,①④是演绎推理.
详解:演绎推理的模式是三段论模式,包括大前提,小前提和结论,
演绎推理的特点是从一般到特殊,
根据上面的特点,判断下面四个结论是否正确,
①一切奇数都不能被2整除,2019是奇数, 2019不能被2整除,是演绎推理,故①不选;
②由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方,是类比推理,
不是演绎推理,故选②;
③在数列中,,,由此归纳出的通项公式,是归纳推理
不是演绎推理,故选③;
④由“三角形内角和为”得到结论:直角三角形内角和为,是演绎推理,
故④不选;
总上可知②③符合要求,
故选:B
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点. (I)证明:AE⊥PD;
(II)H是PD上的动点,EH与平面PAD所成的最大角为45°,求二面角E﹣AF﹣C的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,f(x)=|x﹣a|
(Ⅰ)当a=2,解不等式,f(x)≥5﹣|x﹣1|;
(Ⅱ)若f(x)≤1的解集为[0,2],+=a(m>0,n>0),求证:m+2n≥4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,是偶函数.
(1)求的值;
(2)若函数的图象在直线上方,求的取值范围;
(3)若函数,,是否存在实数使得的最小值为0?若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于回归分析的说法中错误的有( )个
(1). 残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高.
(2). 回归直线一定过样本中心。
(3). 两个模型中残差平方和越小的模型拟合的效果越好。
(4) .甲、乙两个模型的分别约为0.88和0.80,则模型乙的拟合效果更好.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列类比推理命题(其中为有理数集,为实数集,为复数集),其中类比结论正确的是( )
A. “若,则”类比推出“若,则”.
B. 类比推出
C. 类比推出
D. “若,则”类比推出“若,则”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对任意等比数列{an},下列说法一定正确的是( )
A.a1 , a3 , a9成等比数列
B.a2 , a3 , a6成等比数列
C.a2 , a4 , a8成等比数列
D.a3 , a6 , a9成等比数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地区合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制),如茎叶图所示.
(1)写出该样本的众数、中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;
(2)从所抽取的70分以上的学生中再随机选取4人.
①记表示选取4人的成绩的平均数,求;
②记表示测试成绩在80分以上的人数,求的分布和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com