精英家教网 > 高中数学 > 题目详情

【题目】下列推理过程不是演绎推理的是( ).

①一切奇数都不能被2整除,2019是奇数, 2019不能被2整除

由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方;

在数列中,,由此归纳出的通项公式

由“三角形内角和为”得到结论:直角三角形内角和为 .

A. ① ② B. ② ③ C. ③ ④ D. ②④

【答案】B

【解析】分析: 演绎推理的模式是三段论模式,包括大前提,小前提和结论,演绎推理的特点是从一般到特殊,根据上面的特点,判断下面四个结论是否正确,结果是一个归纳推理,是一个类比推理,①是演绎推理.

详解:演绎推理的模式是三段论模式,包括大前提,小前提和结论,

演绎推理的特点是从一般到特殊,

根据上面的特点,判断下面四个结论是否正确,

①一切奇数都不能被2整除,2019是奇数, 2019不能被2整除,是演绎推理,故不选;

由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方是类比推理,

不是演绎推理,故选②;

在数列中,,由此归纳出的通项公式,是归纳推理

不是演绎推理,故选③;

由“三角形内角和为”得到结论:直角三角形内角和为是演绎推理

不选;

总上可知②③符合要求,

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点. (I)证明:AE⊥PD;
(II)H是PD上的动点,EH与平面PAD所成的最大角为45°,求二面角E﹣AF﹣C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,f(x)=|x﹣a|
(Ⅰ)当a=2,解不等式,f(x)≥5﹣|x﹣1|;
(Ⅱ)若f(x)≤1的解集为[0,2],+=a(m>0,n>0),求证:m+2n≥4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数.

(1)求的值;

(2)若函数的图象在直线上方,求的取值范围;

(3)若函数,是否存在实数使得的最小值为0?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于回归分析的说法中错误的有( )

(1). 残差图中残差点所在的水平带状区域越宽则回归方程的预报精确度越高.

(2). 回归直线一定过样本中心

(3). 两个模型中残差平方和越小的模型拟合的效果越好

(4) .甲、乙两个模型的分别约为0.88和0.80,则模型乙的拟合效果更好.

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列类比推理命题(其中为有理数集,为实数集,为复数集),其中类比结论正确的是( )

A. “若,则”类比推出“若,则”.

B. 类比推出

C. 类比推出

D. “若,则”类比推出“若,则”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,当a时,有成立.

在区间1上的最大值;

若对任意的都有,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意等比数列{an},下列说法一定正确的是(
A.a1 , a3 , a9成等比数列
B.a2 , a3 , a6成等比数列
C.a2 , a4 , a8成等比数列
D.a3 , a6 , a9成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地区合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制),如茎叶图所示.

(1)写出该样本的众数、中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;

(2)从所抽取的70分以上的学生中再随机选取4人.

①记表示选取4人的成绩的平均数,求

②记表示测试成绩在80分以上的人数,求的分布和数学期望.

查看答案和解析>>

同步练习册答案