精英家教网 > 高中数学 > 题目详情
(15分)已知函数.
(1)若的切线,函数处取得极值1,求的值;
证明:
(3)若,且函数上单调递增,
求实数的取值范围。
(1)见解析。(2)
本试题主要是考查了导数在研究函数中的运用。
(1)因为的切线,函数处取得极值1,考查了导数的几何意义的运用,以及导数判定函数单调性问题,解得结论。
(2)由
.分析得到。
处取得极值1,且
(3)由
构造函数证明恒成立问题。
解:解得,则
,令

.
处取得极值1,且
,故


    综上:
(2)由

由函数上单调递增,知上恒成立,
上恒成立,




练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知函数f(x)=lnx+
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设mR,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma - (xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2 l+ 1n22,+…+ln2 n>∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数
(1)当时,求的极值;
(2)当时,试比较的大小;
(3)求证:).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数在(0,1)上是增函数.(1)求的取值范围;
(2)设),试求函数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分) 已知函数处取得极小值.
(1)求m的值。
(2)若上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调区间和最小值;
(Ⅱ)若函数上是最小值为,求的值;
(Ⅲ)当(其中="2.718" 28…是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设.如果对任意,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 已知:三次函数,在上单调递增,在上单调递减
(1)求函数f (x)的解析式;

20070328

 
  (2)求函数f (x)在区间[-2,2]的最值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数在区间上是减函数,则的最小值是(  )  
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案