精英家教网 > 高中数学 > 题目详情

【题目】给定数列,若满足),对于任意的,都有,则称数列为“指数型数列”.

1)已知数列的通项公式为,试判断数列是不是“指数型数列”;

2)已知数列满足,证明数列为等比数列,并判断数列是否为“指数型数列”,若是给出证明,若不是说明理由;

3)若数列是“指数型数列”,且,证明数列中任意三项都不能构成等差数列.

【答案】(1)是;(2)是,理由详见解析;(3)详见解析.

【解析】

1)利用指数数列的定义,判断即可;

2)利用a1an2anan+1+3an+1nN*),说明数列{1}是等比数列,然后证明数列{1}为“指数型数列”;

3)利用反证法,结合n为偶数以及奇数进行证明即可.

解:(1)数列,所以数列是“指数型数列”

2)数列是“指数型数列”

所以是等比数列,

所以数列是“指数型数列”

3)若数列是“指数型数列”,由定义得:

假设数列中存在三项成等差数列,不妨设

,得:

整理得:(*)

a为偶数时,右边为偶数,为奇数,则左边为奇数,(*)不成立;

a为奇数时,右边为偶数,为奇数,则左边为奇数,(*)不成立;

所以,对任意的,(*)式不成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直线与椭圆交于两点,是椭圆右顶点,已知直线的斜率为的外接圆半径为.

(1)求椭圆的方程;

(2)若椭圆上有两点,使的平分线垂直,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数\.

1)若处的切线垂直于y轴,求a的值;

2)若对于任意,都有恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,上一点,且,过,现将沿折到,使,如图2.

1)求证:平面

2)在线段上是否存在一点,使与平面所成的角为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并作出了如图的散点图.

温度/

20

22

24

26

28

30

32

产卵数/

6

10

22

26

64

118

310

26

794

358

112

116

2340

3572

其中

1)根据散点图判断,哪一个更适宜作为该昆虫的产卵数与温度的回归方程类型?(给出判断即可,不必说明理由).

2)根据表中数据,建立关于的回归方程;(保留两位有效数字)

3)根据关于的回归方程,估计温度为33℃时的产卵数.

(参考数据:

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为1,线段上有两个动点,且,则下列结论中错误的是____________

平面

③三棱锥的体积为定值;

④异面直线所成的角为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)若函数的图象均在轴上方,求的取值范围;

2)记为函数上的零点,若存在唯一的,使得,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为

A. 2B. 3C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,侧面是正方形,是等腰直角三角形,点是正方形对角线的交点,

1)证明:平面

2)若侧面与底面垂直,求五面体的体积

查看答案和解析>>

同步练习册答案