精英家教网 > 高中数学 > 题目详情

【题目】在一段时间内,分5次测得某种商品的价格x(万元)和需求量y(t)之间的一组数据为:

1

2

3

4

5

价格x

1.4

1.6

1.8

2

2.2

需求量y

12

10

7

5

3

已知

(1)画出散点图;

(2)求出yx的线性回归方程;

(3)如价格定为1.9万元,预测需求量大约是多少?(精确到0.01 t).

参考公式: .

【答案】(1)见解析;(2)y=28.1-11.5x;(3)6.25t.

【解析】分析:(1)先描出各点即得散点图.(2)利用最小二乘法求出yx的线性回归方程.(3)令x=1.9即得需求量.

详解:(1)散点图如图所示:

(2)因为×9=1.8,×37=7.4,

所以

a=- b=7.4+11.5×1.8=28.1,

yx的线性回归方程为 y=28.1-11.5x.

(3)当x=1.9时,y =28.1-11.5×1.9=6.25(t),

所以如价格定为1.9万元,预测需求量大约是6.25(t).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量=(sin(A-B),2cosA)=(1,cos(-B)),且=-sin2C,其中A、B、C分别为△ABC的三边a、b、c所对的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA+sinB=sinC,且 , 求c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.
(1)求证:AB⊥CD;
(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两同学5次综合测评的成绩如茎叶图所示.

9

8

8

3

3

7

2

1

0

9

9

老师在计算甲、乙两人平均分时,发现乙同学成绩的一个数字无法看清.若从{0,1,2,…,9}随机取一个数字代替,则乙的平均成绩超过甲的平均成绩的概率为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在斜三棱柱ABC—A1B1C1中,点D,D1分别为AC,A1C1上的点.

(1)当的值等于何值时,BC1∥平面AB1D1

(2)若平面BC1D∥平面AB1D1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2+lnx.
(Ⅰ)当a=﹣1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-的下方,求a的取值范围;
(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1 , x2 , x3…xk , 使得f′(x1)+f′(x2)+f′(x3)+…+f′(xk)≥2012成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图l,在正方形ABCD中,AB=2,E是AB边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点.将ADAE,CDCF折起,使A、C重合于A点,构成如图2所示的几何体.
(I)求证:A′D⊥面A′EF;
(Ⅱ)试探究:在图1中,F在什么位置时,能使折起后的几何体中EF∥平面AMN,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对应的边分别为a,b,c.
(1)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(2)若a,b,c成等比数列,求cosB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 是非零向量,已知命题p:若 =0, =0,则 =0;命题q:若 ,则 ,则下列命题中真命题是(
A.p∨q
B.p∧q
C.(¬p)∧(¬q)
D.p∨(¬q)

查看答案和解析>>

同步练习册答案