精英家教网 > 高中数学 > 题目详情
2.与圆x2+y2-10x-8y+25=0相内切,且与两条坐标轴都相切的圆的方程为(x-5)2+(y-5)2=25.

分析 由题意和两圆的位置关系可得所求圆的圆心和半径的关系,可得方程.

解答 解:配方可得(x-5)2+(y-4)2=16,
即已知圆的圆心为(5,4),半径为4,
由题意可设要求的圆圆心为(a,a)半径为a,
由两圆内切可得(a-5)2+(a-4)2=a-4,
解得a=5,故圆的方程为(x-5)2+(y-5)2=25
故答案为:(x-5)2+(y-5)2=25

点评 本题考查圆与圆的位置关系,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$-3,$\overrightarrow{a}$=(2$\sqrt{3}$sinx,4),$\overrightarrow{b}$=(2cosx,cos2x).
(Ⅰ)求函数f(x)的最大值及此时x的值;
(Ⅱ)在△ABC中,a,b,c分别为内角A,B,C所对的边,若f(A)为f(x)的最大值,且a=2,sinC=$\sqrt{3}$sinB,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=logag(x)(a>0,且a≠1)
(1)若f(x)=log${\;}_{\frac{1}{2}}$(3x-1),且满足f(x)>1,求x的取值范围:
(2)若g(x)=ax2-x,是否存在实数a使得f(x)在区间[$\frac{1}{2}$,3]上是增函数?如果存在,说明a可以取哪些值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点A(2,-1)与B(4,3)的中点坐标是(3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=mx2-2x+m,若函数f(x)有且只有一个正实数的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了整顿道路交通秩序,某地考虑对行人闯红灯进行处罚,为更加详细闯红灯人数的作用,在某一个路口进行了五天试验,得到当天的处罚金额与当天闯红灯人数
当天处罚金额x(单位:元)05101520
当天闯红灯的人数y8050402010
(1)根据以上数据,建立当天闯红灯人数y关于当天处罚金额x的回归直线方程;
(2)根据统计数据,上述路口每天经过的行人约为400人,每人闯红灯的可能性相同,在行0元处罚的情况下,记甲、乙、丙三人中闯红灯的人数为X,求X的分布列和数学期望相互独立).
附:回归直线方程中系数计算公式b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$,$\overline{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.高考规定考生迟列15分钟后不能进入考场.数学考试下午15:00开始,假设某位同学是在15:00到15:15之间随机到达,求他最早到达考场时间是15:10且还能入场的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=|ax2+bx+c|(a≠0)的定义域分成四个单调区间的充要条件是 (  )
A.a>0且b2-4ac>0B.-$\frac{b}{2a}$>0C.b2-4ac>0D.-$\frac{b}{2a}<0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A为椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1上的点,点B坐标为(2,1),有$\overrightarrow{AP}=2\overrightarrow{PB}$,求点P的轨迹方程.

查看答案和解析>>

同步练习册答案