精英家教网 > 高中数学 > 题目详情

【题目】下列命题:

①函数的图象关于轴对称的充要条件是

②已知是等差数列的前项和,若,则

③函数与函数的图象关于直线对称;

④对于任意两条异面直线,都存在无穷多个平面与这两条异面直线所成的角相等.

其中正确的命题有(

A.1B.2C.3D.4

【答案】B

【解析】

对命题逐项分析,结合已知,即可求得答案.

对于①, 函数的图象关于轴对称

解得:

函数的图象关于轴对称的充要条件是:.

故①错误;

对于②,等差数列中

所以,,故②命题正确;

对于③,由图象变换知,的图象是将的图象向右平移 个单位,的图象是将的图象向左移动个单位,

所以,函数和函数的图象是关于轴对称,故③错误;

对于④,两异面直线与同一个平面所成角可以相等,而与此平面平行的平面有无穷多个,故④正确.

正确的命题有②④.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然对数的底数,是函数的导数.

1)若上的单调函数,求的值;

2)当时,求证:若,且,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,建立平面直角坐标系轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关.炮弹的射程是指炮弹落地点的横坐标.

1)求炮的最大射程;

2)若规定炮弹的射程不小于6千米,设在此条件下炮弹射出的最大高度为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆(为参数),存在一条直线,使得此直线被这些椭圆截得的线段长都等于,求直线方程_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的一个顶点为,焦点在x轴上,若右焦点到直线的距离为3

求椭圆C的方程;

设椭圆C与直线相交于不同的两点MN,线段MN的中点为E

时,射线OE交直线于点为坐标原点,求的最小值;

,且时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来某企业每年消耗电费约24万元为了节能减排决定安装一个可使用15年的太阳能供电设备接入本企业电网安装这种供电设备的工本费(单位万元)与太阳能电池板的面积(单位平方米)成正比比例系数约为0.5为了保证正常用电安装后采用太阳能和电能互补供电的模式假设在此模式下安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数).记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和

(1)试解释的实际意义并建立关于的函数关系式

(2)为多少平方米时取得最小值最小值是多少万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学随机抽取部分高一学生调査其每日自主安排学习的时间(单位:分钟),并将所得数据绘制成如图所示的频率分布直方图,其中自主安排学习时间的范围是[0100],样本数据分组为[020),[2040),[4060),[6080),[80100].

1)求直方图中x的值;

2)现采用分层抽样的方式从每日自主安排学习时间不超过40分钟的学生中随机抽取6人,若从这6人中随机抽取2人进行详细的每日时间安排调查,求抽到的2人每日自主安排学习时间均不低于20分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若的极值点,求a的值及的单调区间;

2)若对任意,不等式成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为.

1)求圆C的直角坐标方程及直线的斜率;

2)直线与圆C交于MN两点,中点为Q,求Q点轨迹的直角坐标方程.

查看答案和解析>>

同步练习册答案