精英家教网 > 高中数学 > 题目详情
13.设P和Q是两个集合,定义集合P+Q={x∈P或x∈Q且∉P∩Q},若P={x|x2-3x-4≤0},Q={x|y=log2(x2-2x-15)},那么P+Q等于(  )
A.[-1,4]B.(-∞,-1]∪[4,+∞)C.(-3,5)D.(-∞,-3)∪[-1,4]∪(5,+∞)

分析 解不等式求出P,根据对数的真数大于0求出Q,进而可得答案.

解答 解:∵P={x|x2-3x-4≤0}=[-1,4],
Q={x|y=log2(x2-2x-15)}=(-∞,-3)∪(5,+∞),
∴P+Q={x∈P或x∈Q且∉P∩Q}=(-∞,-3)∪[-1,4]∪(5,+∞),
故选:D

点评 本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\frac{1}{\sqrt{lo{g}_{2}(2x+1)-3}}$的定义域为($\frac{7}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log2($\frac{x+b}{x-b}$),(b≠0).
(1)求f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)解关于x的不等式f(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=lg(ax2+2x+1).
(1)当a=0时,求f(x)的定义域;
(2)当a=2时求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{1}{x}$在区间[3,5]上值域为[$\frac{1}{5}$,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,求入射光线所在直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A∩B={-3},则A∪B=(  )
A.{-4,-3,0,2,3}B.{-3,-2,0,1,3}C.{-3,-1,0,1,2}D.{-4,-3,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{4}$=1(a>2),圆O:x2+y2=a2+4,椭圆C的左、右焦点分别为F1,F2过椭圆上一点P和原点O作直线l交圆O于M,N两点,若|PF1|•|PF2|=6,则|PM|•|PN|的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z=($\frac{\sqrt{2}i}{1-i}$)2的值为(  )
A.1B.iC.-1D.-i

查看答案和解析>>

同步练习册答案