分析 (1)通过an+1=an+2(n∈N+)易知数列{an}为公差d=2的等差数列,利用a1,a3,a7成等比计算可知a1=4,进而可得结论;
(2)通过(1)可知bn+1-bn=2n+2(n∈N+),进而bn-bn-1=2n(n≥2,且n∈N+)、bn-1-bn-2=2n-2、…、b2-b1=4,累加、裂项可知$\frac{1}{{b}_{n}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,进而并项相加即得结论.
解答 解:(1)∵an+1=an+2(n∈N+),
∴数列{an}为公差d=2的等差数列,
又∵a1,a3,a7成等比,
∴${({a_1}+4)^2}={a_1}•({a_1}+12)$,
解得a1=4,
∴an=2n+2;
(2)由(1)可知bn+1-bn=2n+2(n∈N+),
∴bn-bn-1=2n(n≥2,且n∈N+),
bn-1-bn-2=2n-2,
…
b2-b1=4,
累加得:bn-b1=2•$\frac{(n-1)(2+n)}{2}$,
又∵b1=2,
∴bn=n(n+1),
∴$\frac{1}{{b}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
于是数列$\left\{{\frac{1}{b_n}}\right\}$得前n项的和为1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
点评 本题考查数列的通项及前n项和,利用累加法及裂项相消法是解决本题的关键,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-$\frac{3}{2}$,1)和$\frac{19}{4}$ | B. | (3,2)和$\frac{\sqrt{19}}{2}$ | C. | (-$\frac{3}{2}$,1)和$\frac{\sqrt{19}}{2}$ | D. | ($\frac{3}{2}$,-1)和$\frac{\sqrt{19}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [1,+∞) | B. | (-∞,1) | C. | (-∞,1] | D. | (1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com