精英家教网 > 高中数学 > 题目详情
19.己知椭圆的对称中心为原点O,焦点在x轴上,椭圆上异于长轴顶点的任意点A与左右两焦点F1,F2 构成的三角形中面积的最大值为$\sqrt{3}$,且点($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)在该椭圆上.
(1)求椭圆的方程:
(2)已知点A,B是椭圆上的两动点,若OA⊥OB时,求|AB|的最小值.

分析 (1)由题意,$\frac{1}{2}•2c•b$=$\sqrt{3}$,$\frac{3}{{a}^{2}}$+$\frac{\frac{3}{4}}{{b}^{2}}$=1,求出a,b,即可求椭圆的方程;
(2)利用参数表示A,B的坐标,求出|AB|2=(2cosα+2sinα)2+($\sqrt{3}$sinα-$\sqrt{3}$cosα)2=7+(4-$\sqrt{3}$)sin2α,即可求|AB|的最小值.

解答 解:(1)由题意,$\frac{1}{2}•2c•b$=$\sqrt{3}$,$\frac{3}{{a}^{2}}$+$\frac{\frac{3}{4}}{{b}^{2}}$=1,
∴a=2,b=$\sqrt{3}$,
∴椭圆的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
(2)设椭圆上动点的参数表达式A(2cosα,$\sqrt{3}$sinα),B(2cos(α+$\frac{π}{2}$),$\sqrt{3}$sin(α+$\frac{π}{2}$)),
也即A(2cosα,$\sqrt{3}$sinα),B(-2sinα,$\sqrt{3}$cosα),
于是|AB|2=(2cosα+2sinα)2+($\sqrt{3}$sinα-$\sqrt{3}$cosα)2=7+(4-$\sqrt{3}$)sin2α,
故最小值为$\sqrt{3-\sqrt{3}}$.

点评 本题考查椭圆方程,考查学生的计算能力,正确利用椭圆的参数方程是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.某城市固定电话市内通话的收费标准是:每次通话3分钟以内,收费0.22元;超过3分钟后,每分钟(不足1分钟按1分钟计算)收费0.11元.如果通话时间不超过6分钟,试建立通话应付费与通话时间之间的函数关系,并作出函数图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,过抛物线x2=4py(p>0)焦点的直线依次交抛物线与圆x2+(y-p)2=p2于点A,B,C,D,则$\overrightarrow{AB}$•$\overrightarrow{CD}$的值是(  )
A.8p2B.4p2C.2p2D.p2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的首项a1=1,且an+1=2an+2n,(n∈N*),求该数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=1-3x,f(a)=-8,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.△ABC中,C=60°,a,b边的长是方程x2-8x+6=0的根,则c边长为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=|ex-e2x|,方程f2(x)+af(x)+a-1=0有四个不同的实数根,则a的取值范围是(1-e2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆的极坐标方程为:ρ2-4$\sqrt{2}$$ρcos(θ+\frac{π}{4})$+6=0,若点P(x,y)在圆上,则x+y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,其左、右焦点分别是F1,F2,过点F1的直线l交椭圆C于E,G两点,且△EGF2的周长为$4\sqrt{2}$.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于不同两点A,B,且A,B两点都在y轴的右侧,设P为椭圆上一点,且满足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}(O$为坐标原点),求实数t的取值范围.

查看答案和解析>>

同步练习册答案