精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2+ax+b
x
(x≠0)
是奇函数,且满足f(1)=f(4)
(Ⅰ)求实数a、b的值; 
(Ⅱ)试证明函数f(x)在区间(0,2]单调递减,在区间(2,+∞)单调递增;
(Ⅲ)是否存在实数k同时满足以下两个条件:
①不等式f(x)+
k
2
>0
对x∈(0,+∞)恒成立;
②方程f(x)=k在x∈[-6,-1]上有解.若存在,试求出实数k的取值范围,若不存在,请说明理由.
分析:(Ⅰ)先根据f(1)=f(4)求出b的值;再结合f(x)+f(-x)=0对x≠0恒成立求出a的值即可;
(Ⅱ)直接按照单调性的证明过程来证即可;
(Ⅲ)先结合第二问的结论知道函数f(x)在(0,+∞)上有最小值f(2)=4以及可知函数f(x)在(-∞,-2)上递增,在[-2,0)上递减;对于①;转化为f(x)min>-
k
2
;对于②转化为求函数的值域问题即可;最后把两个成立的范围相结合即可求出结论.
解答:解:(Ⅰ) 由f(1)=f(4)得1+a+b=
16+4a+b
4
,解得b=4.  …(1分)
f(x)=
x2+ax+b
x
(x≠0)
为奇函数,得f(x)+f(-x)=0对x≠0恒成立,
x2+ax+b
x
+
x2-ax+b
-x
=2a=0
,所以a=0.  …(3分)
(Ⅱ)由(Ⅰ)知,f(x)=x+
4
x

任取x1,x2∈(0,2],且x1<x2f(x1)-f(x2)=(x1+
4
x1
)-(x2+
4
x2
)=(x1-x2)
x1x2-4
x1x2
,…(5分)
∵0<x1<x2≤2,∴x1-x2<0,x1x2>0,x1x2-4<0,
∴f(x1)-f(x2)>0,f(x1)>f(x2),
所以,函数f(x)在区间(0,2]单调递减.  …(7分)
类似地,可证f(x)在区间(2,+∞)单调递增.  …(8分)
(Ⅲ)对于条件①,由(Ⅱ)得函数f(x)在(0,+∞)上有最小值f(2)=4,
故若f(x)+
k
2
>0
对x∈(0,+∞)恒成立,
则需f(x)min>-
k
2
,则4>-
k
2

∴k>-8;
对于条件②,由(Ⅱ)可知函数f(x)在(-∞,-2)上递增,在[-2,0)上递减,
∴函数f(x)在[-6,-2]上递增,在[-2,0)上递减,
又f(-6)=-
20
3
,f(-2)=-4,f(-1)=-5,
所以函数f(x)在[-6,-1]上的值域为[-
20
3
,-4],
若方程f(x)=k在[-6,-1]上有解,则需-
20
3
k≤-4,
若同时满足条件①②,则需
k>-8
-
20
3
≤ k≤-4

所以:-
20
3
≤k≤-4.
故当-
20
3
≤k≤-4时,条件①②同时满足.
点评:本题主要考察函数奇偶性与单调性的综合.解决第一问的关键在于利用奇函数的定义得到f(x)+f(-x)=0对x≠0恒成立求出a的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案