精英家教网 > 高中数学 > 题目详情
10.已知一组数据(1,2),(3,5),(6,8),(x0,y0)的线性回归方程为$\stackrel{∧}{y}$=x+2,则x0-y0的值为(  )
A.-3B.-5C.-2D.-1

分析 利用平均数公式计算预报中心点的坐标,根据回归直线必过样本的中心点可得答案.

解答 解:由题意知$\overline{x}$=$\frac{1}{4}$(10+x0),$\overline{y}$=$\frac{1}{4}$(15+y0),
∵线性回归方程为$\stackrel{∧}{y}$=x+2,
∴$\frac{1}{4}$(15+y0)=$\frac{1}{4}$(10+x0)+2,
解得:x0-y0=-3,
故选:A

点评 本题考查了线性回归直线的性质,回归直线必过样本的中心点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知x,y为非零实数,则集合M={m|m=$\frac{x}{|x|}$+$\frac{y}{|y|}$+$\frac{xy}{|xy|}$}为(  )
A.{0,3}B.{1,3}C.{-1,3}D.{1,-3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知不等式x2-2x-3<0的解集为A,不等式-x2-x+6>0的解集为B.求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.先阅读下面的推理过程,然后完成下面问题:
在等式cos2x=2cos2x-1(x∈R)的两边对x求导,即(cos2x)′=(2cos2x-1)′;
由求导法则得(-sin2x)•2=4cosx•(-sinx)化简后得等式sin2x=2sinxcosx.
(Ⅰ)已知等式(1+x)n=${C}_{n}^{0}$+${C}_{n}^{1}$x+${C}_{n}^{2}$x2+…+${C}_{n}^{n-1}$xn-1+${C}_{n}^{n}$xn(x∈R,整数n≥2),证明:n[(1+x)n-1-1]=$\sum_{k=2}^{n}$k${C}_{n}^{k}$xk-1
(Ⅱ)设n∈N*,x∈R,已知(2+x)n=a0+a1x+a2x2+…+anxn,令bn=$\frac{n({n}^{2}+1)({a}_{0}-{2}^{n-1})}{{a}_{1}+2{a}_{2}+3{a}_{3}+…+n{a}_{n}}$,求数列{bn}的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图所示,在三角形ABC中,BD=2DC,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{AD}$=(  )
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{b}$D.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求值 
(1)$sin(-\frac{35π}{4})$
(2)$\frac{{cos(-{{585}°})}}{{tan{{495}°}+sin(-{{690}°})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等差数列{an}中,若 a3+a8+a13=24,则其前15项的和S15的值等于(  )
A.60B.30C.240D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知O为坐标原点,定点A(3,4),动点P(x,y)满足约束条件$\left\{\begin{array}{l}{x≥1}\\{y+1≥x}\\{x+y≤3}\end{array}\right.$,则向量$\overrightarrow{OP}$在$\overrightarrow{OA}$上的投影的取值范围是(  )
A.[$\frac{3}{5}$,$\frac{7}{5}$]B.[$\frac{3}{5}$,$\frac{9}{5}$]C.[$\frac{7}{5}$,$\frac{9}{5}$]D.[$\frac{3}{5}$,$\frac{11}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,则不等式f(x+2)+f(3x-4)>0的解集为($\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案