精英家教网 > 高中数学 > 题目详情
(2013•杨浦区一模)将一颗质地均匀的骰子连续投掷两次,朝上的点数依次为b和c,则函数f(x)=x2+2bx+c图象与x轴无公共点的概率是
7
36
7
36
分析:由函数f(x)=x2+2bx+c图象与x轴无公共点可得 c>b2.用列举法求得满足条件的(b,c)有7个,而所有的(b,c)有6×6=36个,由此求得函数f(x)=x2+2bx+c图象与
x轴无公共点的概率.
解答:解:由函数f(x)=x2+2bx+c图象与x轴无公共点可得 4b2-4c<0,即 c>b2
故满足条件的(b,c)有:(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,5)、(2,6),共有7个,
而所有的(b,c)有6×6=36个,
故函数f(x)=x2+2bx+c图象与x轴无公共点的概率是
7
36

故答案为
7
36
点评:本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•杨浦区一模)已知F1、F2为双曲线C:
x2
4
-y2=1
的左、右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杨浦区一模)椭圆T的中心为坐标原点O,右焦点为F(2,0),且椭圆T过点E(2,
2
).△ABC的三个顶点都在椭圆T上,设三条边的中点分别为M,N,P.
(1)求椭圆T的方程;
(2)设△ABC的三条边所在直线的斜率分别为k1,k2,k3,且ki≠0,i=1,2,3.若直线OM,ON,OP的斜率之和为0,求证:
1
k1
+
1
k2
+
1
k3
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杨浦区一模)“a=3”是“函数f(x)=x2-2ax+2在区间[3,+∞)内单调递增”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杨浦区一模)若函数f(x)=3x的反函数为f-1(x),则f-1(1)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杨浦区一模)若复数z=
1-i
i
 (i为虚数单位),则|z|=
2
2

查看答案和解析>>

同步练习册答案