精英家教网 > 高中数学 > 题目详情

【题目】知函数.

(1)当时,求曲线在点处的切线方程;

(2)讨论的单调性;

(3)若,求的取值范围.

【答案】(1).

(2)见解析.

(3).

【解析】分析:(1)根据代入得到,代入求得点坐标为求出导函数,代入 得到斜率为因而求得切线方程为

(2)根据导函数,对讨论不同情况下导函数的符号,得到单调区间

(3)根据(2)及恒成立可得。构造函数,根据及其在上的单调性解关于m的不等式,求得m的取值范围。

详解:(1)当时,

,则

故曲线在点处的切线方程为,即.

(2)

时,上单调递减.

时,若;若.

上单调递减,在上单调递增.

时,若;若.

上单调递减,在上单调递增.

(3)∴由(2)知.

.

上单调递增,∴

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为 ”的(
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年来,网上购物已经成为人们消费的一种趋势,假设某网上商城的某种商品每月的销售量(单位:千件)与销售价格(单位:元/件)满足关系式:,其中为常数.已知销售价格为元/件时,每月可售出千件.

(1)求的值;

(2)假设每件商品的进价为元,试确定销售价格的值,使该商城每月销售该商品所获得的利润最大.(结果保留一位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在x轴正半轴上,半径为5,且与直线相切.

(1)求圆C的方程;

(2)设点,过点作直线与圆C交于两点,若,求直线的方程;

(3)设P是直线上的点,过P点作圆C的切线,切点为求证:经过 三点的圆必过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形是边长为4的正方形,的中点.

(1)在图中作出并指明平面和平面的交线

(2)求证:

(3)当时,求与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的课外阅读时间情况,某学校随机抽取了50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:

阅读时间

人数

8

10

12

11

7

2

若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作成如图所示的等高条形图.

(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的终点值作为代表);

(2)根据已知条件完成下面的列联表,并判断是否有99%的把握认为“阅读达人”跟性别有关?

男生

女生

总计

阅读达人

非阅读达人

总计

附:参考公式,其中.

临界值表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期是,且在区间上单调递减.

(1)求函数的解析式;

(2)若关于的方程

上有实数解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位招聘员工,有名应聘者参加笔试,随机抽查了其中名应聘者笔试试卷,统计他们的成绩如下表:

分数段

人数

1

3

6

6

2

1

1

若按笔试成绩择优录取名参加面试,由此可预测参加面试的分数线为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)已知是虚数, 是实数.

(1)求为何值时, 有最小值,并求出|的最小值;

(2)设,求证: 为纯虚数.

查看答案和解析>>

同步练习册答案