精英家教网 > 高中数学 > 题目详情

【题目】是双曲线 的两个焦点,上一点,若是△的最小内角,且,则双曲线的渐近线方程是( )

A. B.

C. D.

【答案】B

【解析】

|PF1||PF2|,由已知条件求出|PF1|4a|PF2|2ae,进而求出b,由此能求出双曲线C1的渐近线方程.

|PF1||PF2|,则|PF1||PF2|2a

|PF1|+|PF2|6a,解得|PF1|4a|PF2|2a

则∠PF1F2是△PF1F2的最小内角为30°,

| PF2|2| PF1||2+|F1F2|22| PF1|||F1F2|cos30°,

∴(2a2=(4a2+2c22×4a×2c

同时除以a2,化简e22e+30

解得e,∴c,∴b

∴双曲线C1的渐近线方程为y±

0

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线:的左、右焦点分别为为坐标原点,是双曲线在第一象限上的点,直线交双曲线左支于点,直线 交双曲线右支于点,若,且,则双曲线的渐近线方程为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.

(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;

(Ⅱ)设直线与曲线C交于P,Q两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆柱的一条母线,已知BC过底面圆的圆心OD是圆O上不与点BC重合的任意一点,

1)求直线AC与平面ABD所成角的大小;

2)求点B到平面ACD的距离;

3)将四面体ABCD绕母线AB旋转一周,求由旋转而成的封闭几何体的体积;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)如图,在边长为的菱形中,,点分别是边的中点,.沿翻折到,连接,得到如图的五棱锥,且

1)求证:平面

2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高速公路隧道设计为单向三车道,每条车道宽4米,要求通行车辆限高5米,隧道全长1.5千米,隧道的断面轮廓线近似地看成半个椭圆形状(如图所示).

1)若最大拱高6米,则隧道设计的拱宽至少是多少米?(结果取整数)

2)如何设计拱高和拱宽,才能使半个椭圆形隧道的土方工程量最小?(结果取整数)

参考数据:,椭圆的面积公式为,其中分别为椭圆的长半轴和短半轴长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为8的菱形中,,将沿折起,使点到达的位置,且二面角.

(1)求异面直线所成角的大小;

(2)若点中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E焦点F,过点F且斜率为2的直线与抛物线交于AB两点,且

(1)求抛物线E的方程;

(2)O是坐标原点,PQ是抛物线E上分别位于x轴两侧的两个动点,且

①证明:直线PQ必过定点,并求出定点G的坐标;

②过GPQ的垂线交抛物线于CD两点,求四边形PCQD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—5:参数方程选讲]

在直角坐标系xoy中,曲线的参数方程是(t是参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程是

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若两曲线交点为A、B,求

查看答案和解析>>

同步练习册答案