【题目】设、是双曲线: 的两个焦点,是上一点,若,是△的最小内角,且,则双曲线的渐近线方程是( )
A. B.
C. D.
【答案】B
【解析】
设|PF1|>|PF2|,由已知条件求出|PF1|=4a,|PF2|=2a,e,进而求出b,由此能求出双曲线C:1的渐近线方程.
设|PF1|>|PF2|,则|PF1|﹣|PF2|=2a,
又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a.
则∠PF1F2是△PF1F2的最小内角为30°,
∴| PF2|2=| PF1||2+|F1F2|2﹣2| PF1|||F1F2|cos30°,
∴(2a)2=(4a)2+(2c)2﹣2×4a×2c,
同时除以a2,化简e2﹣2e+3=0,
解得e,∴c,∴b,
∴双曲线C:1的渐近线方程为y±,
即0.
故选:B.
科目:高中数学 来源: 题型:
【题目】已知双曲线:的左、右焦点分别为、,为坐标原点,是双曲线在第一象限上的点,直线交双曲线左支于点,直线 交双曲线右支于点,若,且,则双曲线的渐近线方程为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.
(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线与曲线C交于P,Q两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆柱的一条母线,已知BC过底面圆的圆心O,D是圆O上不与点B、C重合的任意一点,:
(1)求直线AC与平面ABD所成角的大小;
(2)求点B到平面ACD的距离;
(3)将四面体ABCD绕母线AB旋转一周,求由旋转而成的封闭几何体的体积;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)如图,在边长为的菱形中,,点,分别是边,的中点,.沿将△翻折到△,连接,得到如图的五棱锥,且.
(1)求证:平面;
(2)求四棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高速公路隧道设计为单向三车道,每条车道宽4米,要求通行车辆限高5米,隧道全长1.5千米,隧道的断面轮廓线近似地看成半个椭圆形状(如图所示).
(1)若最大拱高为6米,则隧道设计的拱宽至少是多少米?(结果取整数)
(2)如何设计拱高和拱宽,才能使半个椭圆形隧道的土方工程量最小?(结果取整数)
参考数据:,椭圆的面积公式为,其中,分别为椭圆的长半轴和短半轴长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长为8的菱形中,,将沿折起,使点到达的位置,且二面角为.
(1)求异面直线与所成角的大小;
(2)若点为中点,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线E:焦点F,过点F且斜率为2的直线与抛物线交于A、B两点,且.
(1)求抛物线E的方程;
(2)设O是坐标原点,P,Q是抛物线E上分别位于x轴两侧的两个动点,且
①证明:直线PQ必过定点,并求出定点G的坐标;
②过G作PQ的垂线交抛物线于C,D两点,求四边形PCQD面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—5:参数方程选讲]
在直角坐标系xoy中,曲线的参数方程是(t是参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程是
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若两曲线交点为A、B,求
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com