精英家教网 > 高中数学 > 题目详情

已知抛物线方程为,过点作直线与抛物线交于两点,,过分别作抛物线的切线,两切线的交点为.
(1)求的值;
(2)求点的纵坐标;
(3)求△面积的最小值.

(1)-8;(2)-2:(3)

解析试题分析:
解题思路:(1)联立直线与抛物线方程,整理得到关于的一元二次方程,利用根与系数的关系求两根之积即可;(2)由导数的几何意义求切线方程,联立方程,解方程组即得P点纵坐标;(3)求弦长和面积,再利用基本不等式求最值.
规律总结:直线与抛物线的位置关系,是高考数学的重要题型,其一般思路是联立直线与抛物线的方程,整理得到关于或的一元二次方程,采用“设而不求”的方法进行解答,综合型较强.
试题解析:(1)由已知直线的方程为,代入,∴.        
(2)由导数的几何意义知过点的切线斜率为,       
∴切线方程为,化简得  ① 
同理过点的切线方程为                  ②   
,得,              ③
将③代入①得,∴点的纵坐标为.            
(3)设直线的方程为
由(1)知
∵点到直线的距离为,     
线段的长度为
.                     ,  
当且仅当时取等号,∴△面积的最小值为.
考点:直线与抛物线的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C:+=1(a>b>0),直线l:y=kx+m(k≠0,m≠0),直线l交椭圆C与P,Q两点.
(Ⅰ)若k=1,椭圆C经过点(,1),直线l经过椭圆C的焦点和顶点,求椭圆方程;
(Ⅱ)若k=,b=1,且kOP,k,kOQ成等比数列,求三角形OPQ面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且,圆的方程是.
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;
(3)过圆上任意一点作圆的切线交双曲线两点,中点为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别是椭圆的左,右焦点.
(1)若是椭圆在第一象限上一点,且,求点坐标;(5分)
(2)设过定点的直线与椭圆交于不同两点,且为锐角(其中为原点),求直线的斜率的取值范围.(7分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆Γ:(a>b>0)经过D(2,0),E(1,)两点.
(1)求椭圆Γ的方程;
(2)若直线与椭圆Γ交于不同两点A,B,点G是线段AB中点,点O是坐标原点,设射线OG交Γ于点Q,且.
①证明:
②求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xoy中,已知椭圆C:=1(a>b≥1)的离心率e=,且椭圆C上的点到点Q (0,3)的距离最大值为4,过点M(3,0)的直线交椭圆C于点A、B.
(1)求椭圆C的方程。
(2)设P为椭圆上一点,且满足(O为坐标原点),当|AB|<时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆G:过点,C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.
(1)求椭圆G的方程;
(2)求四边形ABCD 的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

椭圆上一点P到左焦点的距离为,则P到左准线的距离为_________

查看答案和解析>>

同步练习册答案