【题目】已知点为抛物线的焦点,过点任作两条互相垂直的直线,,分别交抛物线于,,,四点,,分别为,的中点.
(1)求证:直线过定点,并求出该定点的坐标;
(2)设直线交抛物线于,两点,试求的最小值.
【答案】(1)证明见解析,直线过定点(2)的最小值为.
【解析】
(1)设,,显然直线,的斜率是存在的,设直线的方程为,代入可得,可得出的中点坐标为,再根据,得的中点坐标为,再令得,
得出直线恒过点,验证,得,,三点共线,从而直线过的定点;
(2))由(1)设直线的方程为,代入可得,再设,,得韦达定理,,表示出,由二次函数得出线段的最小值.
(1)设,,
直线的方程为,代入可得,
则,故,
故的中点坐标为.
由,得,所以的中点坐标为.
令得,
此时,故直线过点,
当时,,.
所以,,,三点共线,
所以直线过定点.
(2)设,,直线的方程为,
代入可得,则,,
故
(当时,取等号).
故,当及直线垂直轴时,取得最小值.
科目:高中数学 来源: 题型:
【题目】已知平面上两定点M(0,﹣2)、N(0,2),P为一动点,满足||||
(I)求动点P的轨迹C的方程;
(II)若A、B是轨迹C上的两不同动点,且λ.分别以A、B为切点作轨迹C的切线,设其交点Q,证明为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
甲、乙、丙三名射击运动员射中目标的概率分别为,三人各射击一次,击中目标的次数记为.
(1)求的分布列及数学期望;
(2)在概率(=0,1,2,3)中, 若的值最大, 求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为直角梯形,,,,,且为的中点,延长交于点,且在底内的射影恰为的中点,为的中点,为上任意一点.
(1)证明:平面平面;
(2)求平面与平面所成锐角二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有1000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族",计划在明年及明年以后才购买5G手机的员工称为“观望者”,调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.
(1)完成下列列联表,并判断是否有95%的把握认为该公司员工属于“追光族"与“性别"有关;
属于“追光族" | 属于“观望者" | 合计 | |
女性员工 | |||
男性员工 | |||
合计 | 100 |
(2)已知被抽取的这100名员工中有10名是人事部的员工,这10名中有3名属于“追光族”.现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求的分布列及数学期望.
附,其中
0.15 | 0.10 | 0.05 | 0.025 | p>0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知是曲线:上的动点,将绕点顺时针旋转得到,设点的轨迹为曲线.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线,的极坐标方程;
(2)在极坐标系中,点,射线与曲线,分别相交于异于极点的两点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,,若椭圆经过点,且△PF1F2的面积为2.
(1)求椭圆的标准方程;
(2)设斜率为1的直线与以原点为圆心,半径为的圆交于A,B两点,与椭圆C交于C,D两点,且(),当取得最小值时,求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com