【题目】已知椭圆的左、右焦点分别为,点在椭圆上,,,且的离心率为,抛物线,点在上.
(1)求椭圆的方程;
(2)过点作的切线,若,直线与交于两点,求面积的最大值.
科目:高中数学 来源: 题型:
【题目】设为坐标原点,动点在圆上,过作轴的垂线,垂足为,点满足.
(1)求点的轨迹的方程;
(2)直线上的点满足.过点作直线垂直于线段交于点.
(ⅰ)证明:恒过定点;
(ⅱ)设线段交于点,求四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在评定为“优”,奖励3面小红旗;得分在评定为“良”,奖励2面小红旗;得分在评定为“中”,奖励1面小红旗;得分在评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如图:
(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;
(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.
(1)求直线的极坐标方程和曲线的参数方程;
(2)若,直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M是椭圆C:+=1(a>b>0)上一点,F1F2分别为椭圆C的左右焦点,且|F1F2|=2,∠F1MF2=,△F1MF2的面积为.
(1)求椭圆C的方程;
(2)直线l过椭圆C右焦点F2,交该椭圆于AB两点,AB中点为Q,射线OQ交椭圆于P,记△AOQ的面积为S1,△BPQ的面积为S2,若,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下三个条件:
①数列是首项为 2,满足的数列;
②数列是首项为2,满足(λ∈R)的数列;
③数列是首项为2,满足的数列..
请从这三个条件中任选一个将下面的题目补充完整,并求解.
设数列的前n项和为,与满足______,记数列,,求数列{}的前n项和;
(注:如选择多个条件分别解答,按第一个解答计分)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某央企在一个社区随机采访男性和女性用户各50名,统计他(她)们一天()使用手机的时间,其中每天使用手机超过6小时(含6小时)的用户称为“手机迷”,否则称其为“非手机迷”,调查结果如下:
男性用户的频数分布表
男性用户日用时间分组() | |||||
频数 | 20 | 12 | 8 | 6 | 4 |
女性用户的频数分布表
女性用户日用时间分组() | |||||
频数 | 25 | 10 | 6 | 8 | 1 |
(1)分别估计男性用户,女性用户“手机迷”的频率;
(2)求男性用户每天使用手机所花时间的中位数;
(3)求女性用户每天使用手机所花时间的平均数与标准差(同一组中的数据用该组区间的中点值作代表).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com