(本小题共14分)
在单调递增数列中,,不等式对任意都成立.
(Ⅰ)求的取值范围;
(Ⅱ)判断数列能否为等比数列?说明理由;
(Ⅲ)设,,求证:对任意的,.
(1) (2) 用反证法证明:假设数列是公比为的等比数列, 因为单调递增,所以.因为,都成立,从而加以证明。
(3)通过前几项归纳猜想,然后运用数学归纳法加以证明。
解析试题分析:(Ⅰ)解:因为是单调递增数列,
所以,.
令,,,
所以. ………………4分
(Ⅱ)证明:数列不能为等比数列.
用反证法证明:
假设数列是公比为的等比数列,,.
因为单调递增,所以.
因为,都成立.
所以, ①
因为,所以,使得当时,.
因为.
所以,当时,,与①矛盾,故假设不成立.………9分
(Ⅲ)证明:观察: ,,,…,猜想:.
用数学归纳法证明:
(1)当时,成立;
(2)假设当时,成立;
当时,
所以.
根据(1)(2)可知,对任意,都有,即.
由已知得,.
所以.
所以当时,.
因为.
所以对任意,.
对任意,存在,使得,
因为数列{
科目:高中数学 来源: 题型:解答题
(本题满分16分)
已知数列,其中是首项为1,公差为1的等差数列;是公差为的等差数列;是公差为的等差数列().
(Ⅰ)若= 30,求;
(Ⅱ)试写出a30关于的关系式,并求a30的取值范围;
(Ⅲ)续写已知数列,可以使得是公差为3的等差数列,请你依次类推,把已知数列推广为无穷数列,试写出关于的关系式(N);
(Ⅳ)在(Ⅲ)条件下,且,试用表示此数列的前100项和
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:
1
3 5
7 9 11
………………………
……………………………
设是位于这个三角形数表中从上往下数第行、从左往右数第个数.
(1)若,求的值;
(2)若记三角形数表中从上往下数第行各数的和为,求证.(本题满分14分)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com