精英家教网 > 高中数学 > 题目详情

已知函数数学公式的图象过点数学公式,若有4个不同的正数xi满足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),则x1+x2+x3+x4等于________.

6
分析:先由g(x)过点,求得φ,进而求得函数g(x),再由g(x)=M 在两个周期之内有四个解,则在在一个周期内必有两个解,表示出四个解来相加可得.
解答:∵g(x)过点




∴φ=

∵g(x)=M 在两个周期之内有四个解,
∴在一个周期内有两个解





以上四式相加得:
x1+x2+x3+x4=6
故答案为:6
点评:本题主要考查三角函数的周期性及三角方程有多解的特性,但都有相应的规律,与周期有关.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(05年福建卷文)(12分)

已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为.

   (Ⅰ)求函数的解析式;

(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)

已知函数的图象过点,且在点处的切线方程为.

   (Ⅰ)求函数的解析式;

(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:2011年上海市卢湾区高考数学一模试卷(理科)(解析版) 题型:解答题

已知函数的图象过点A(3,7),则此函的最小值是   

查看答案和解析>>

科目:高中数学 来源:2015届四川省资阳市高一上学期期末质量检测数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知函数的图象过点,且图象上与点P最近的一个最低点是

(Ⅰ)求的解析式;

(Ⅱ)若,且为第三象限的角,求的值;

(Ⅲ)若在区间上有零点,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013届福建省高二下学期第一次阶段考数学理科试卷 题型:解答题

已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为.

(1)求函数的解析式;  (2)求函数的单调区间

 

查看答案和解析>>

同步练习册答案