精英家教网 > 高中数学 > 题目详情
已知函数
(I)求f(x)最小正周期和单调递减区间;
(II)若上恒成立,求实数m的取值范围.
【答案】分析:(I)由已知中函数f(x)的解析式,根据二倍角的余弦公式,诱导公式和和差角公式,可将函数的解析式化为正弦型函数的形式,进而根据正弦型函数的图象和性质,得到f(x)最小正周期和单调递减区间;
(II)由(I)中函数的解析式及正弦型函数的图象和性质,结合当,有,我们可以求出函数f(x)的值域,进而根据上恒成立,构造关于m的不等式,求出m的取值范围.
解答:解:(I)∵函数




故f(x)的递减区间:…(6分)
(II)由上恒成立,
得f(x)max<m+2,
,有




点评:本题考查的知识点是正弦函数的单调性,三角函数的化简求值,三角函数的周期性及其求法,正弦函数的定义域和值域,其中根据已知求出函数的解析式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年湖北省荆州市公安三中高三(上)数学积累测试卷10(解析版) 题型:解答题

已知函数
(I )求f(x)的最小正周期;
(Ⅱ)若将f(x)的图象按向量平移得到函数g(x)的图象,求函数g(x)在区间[0,π]上的单调区间及值域.

查看答案和解析>>

科目:高中数学 来源:2011年安徽省百校论坛高三第一次联考数学试卷(理科)(解析版) 题型:解答题

已知函数
(I)求f(x)最小正周期和单调递减区间;
(II)若上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三上学期第七次测试理科数学试卷(解析版) 题型:解答题

已知函数

   (I)求f(x)在[0,1]上的极值;

   (II)若对任意成立,求实数a的取值范围;

   (III)若关于x的方程在[0,1]上恰有两个不同的实根,求实数b的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省信阳高中高三第一次大考数学试卷(文科)(解析版) 题型:解答题

已知函数
(I)求f(x)的单调区间;
(II)求证:不等式恒成立.

查看答案和解析>>

同步练习册答案