精英家教网 > 高中数学 > 题目详情
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

求证:(1)AM∥平面BDE;
(2)AM⊥平面BDF.
(1)见解析(2)见解析
(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连结NE.

则N,E(0,0,1),A(,0),M.
.
且NE与AM不共线.∴NE∥AM.
∵NE?平面BDE,AM平面BDE,∴AM∥平面BDE.
(2)由(1)知
∵D(,0,0),F(,1),∴=(0,,1),
·=0,∴AM⊥DF.同理AM⊥BF.又DF∩BF=F,∴AM⊥平面BDF.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图, 已知四边形ABCDBCEG均为直角梯形,ADBCCEBG,且,平面ABCD⊥平面BCEGBC=CD=CE=2AD=2BG=2.

(1)求证:AG平面BDE;
(2)求:二面角GDEB的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥O—ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA中点。

(1)求证:直线BD⊥平面OAC;
(2)求直线MD与平面OAC所成角的大小;
(3)求点A到平面OBD的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求异面直线AB1与DD1所成角的余弦值;
(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正四棱柱,则与平面所成角的正弦值等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间直角坐标系O-xyz中,平面OAB的法向量为=(2, –2, 1), 已知P(-1, 3, 2),则P到平面OAB的距离等于 (  )
A.4B.2C.3D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若平面α的一个法向量为n=(4,1,1),直线l的一个方向向量为a=(-2,-3,3),则l与α所成角的正弦值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知空间三点A(1,1,1),B(-1,0, 4),C(2,-2,3),则的夹角θ的大小是(  )
A.B.πC.D.π

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知l∥α,且l的方向向量为(2,m,1),平面α的法向量为,则m=________.

查看答案和解析>>

同步练习册答案