精英家教网 > 高中数学 > 题目详情
如图,A、B、C、D是河两岸的四根电线杆,A、B在河这边,C、D在河对岸,现在距离A处150m的B处测得∠ABD=30°,∠DBC=60°,而在A处测得∠BAC=45°,∠CAD=60°,求C、D两点间的距离.(已知A、B、C、D在同一平面内).
考点:解三角形的实际应用
专题:综合题,解三角形
分析:根据题中条件,在△ADB中由正弦定理求得DB,在△DBC中由余弦定理求得DC.
解答: 解:如图可知∠ABC=90°
∵∠BAC=45°,∴∠BCA=45°
∴AB=CB=150m
∵∠BAC=45°,∠CAD=60°,∠ABD=30°,
∴∠ADB=45°,
150
2
2
=
DB
6
+
2
4

∴DB=75(
3
+1)
∴CD=
1502+[75(
3
+1)]2-2×150×75(
3
+1)×
1
2
=15
150
m.
点评:本题主要考查正弦定理和余弦定理在实际中的应用.由于图形中三角形比较多,应分清在哪个三角形中利用正弦定理和余弦定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个样本的频率分布直方图共有4个小矩形,它们的高的比从左到右依次为2:4:3:1,若第4组的频数为3,则第2组的频率和频数分别为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若“*“表示一种运算,满足如下关系,(1)1*1=2,(2)(n+1)*1=3(n*1)+2 (n∈N*) 则n*1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,在定义域内既是偶函数又在(0,+∞)上单调递增的是(  )
A、y=x3
B、y=3x
C、y=cosx
D、y=ln|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x>0},B={x|
x
x-1
<0},则A∩B等于(  )
A、(0,1)
B、(0,+∞)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若C2n+1=
1
6
A3n+1,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)(x∈R)是以4为周期的奇函数,当x∈(0,2)时,f(x)=ln(x2-x+b).若函数f(x)在区间[-2,2]上有5个零点,则实数b的取值范围是(  )
A、-1<b≤1
B、
1
4
≤b≤
5
4
C、-1<b<1或b=
5
4
D、
1
4
<b≤1或b=
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

自驾游从A地到B地有甲乙两条线路,甲线路是A-C-D-B,乙线路是A-E-F-G-H-B,其中CD段,EF段,GH段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表所示:
堵车时间(小时)频数
[0,1]8
(1,2]6
(2,3]38
(3,4]24
(4,5]24
经调查发现堵车概率x在(
2
3
,1)上变化,y在(0,
1
2
)上变化.在不堵车的状况下,走甲路线需汽油费500元,走乙线路需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计CD段平均堵车时间,调查了100名走甲线路的司机,得到如表数据.
路段         CDEFGH
堵车概率                                                                    xy
1
4
平均堵车时间(小时)                                                             a21
(Ⅰ)根据右表数据画出CD段堵车时间频率分布直方图并求CD段平均堵车时间a的值;
(Ⅱ)若只考虑所花汽油费的期望值大小,为了节约,求选择走甲线路的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,将线段AB围成一个圆,使两端点A、B恰好重合,再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),连接AM并延长交x轴交于点N(n,0),则区间(0,1)中实数m的像就是n,记作f(m)=n.
(1)f(
1
3
)=
 

(2)0<m<1时,f(m)的解析式是f(m)=
 

查看答案和解析>>

同步练习册答案