精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C在直角坐标系xOy下的参数方程为 (θ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)直线l的极坐标方程是ρcos(θ﹣ )=3 ,射线OT:θ= (ρ>0)与曲线C交于A点,与直线l交于B,求线段AB的长.

【答案】
(1)解:曲线C的参数方程为 (θ为参数),

消去参数化为:(x﹣1)2+y2=3,展开为:x2+y2﹣2x﹣2=0,

化为极坐标方程:ρ2﹣2ρcosθ﹣2=0.


(2)联立 ,化为:ρ2﹣ρ﹣2=0,ρ>0,解得ρ=2.

射线OT:θ= (ρ>0)与曲线C交于A点

联立

解得ρ=6,射线OT:θ= (ρ>0)与直线l交于B

∴线段AB的长=6﹣2=4


【解析】(1)曲线C的参数方程为 (θ为参数),消去参数化为:(x﹣1)2+y2=3,展开利用互化公式即可得出极坐标方程.(2)射线OT:θ= (ρ>0)分别与曲线C,直线l的极坐标方程联立解出交点坐标即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣ax﹣4(a∈R)的两个零点为x1 , x2 , 设x1<x2
(1)当a>0时,证明:﹣2<x1<0;
(2)若函数g(x)=x2﹣|f(x)|在区间(﹣∞,﹣2)和(2,+∞)上均单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l与曲线y2=4x(y≥0)交于A,D两点(A在D的左侧),A,D两点在x轴上的射影分别为点B,C,且|BC|=2. (Ⅰ)当点B的坐标为(1,0)时,求直线AD的斜率;
(Ⅱ)记△OAD的面积为S1 , 梯形ABCD的面积为S2 , 求 的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为(
A.48
B.16
C.32
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)经过点(2, )且离心率等于 ,点A,B分别为椭圆C的左右顶点,点P在椭圆C上.
(1)求椭圆C的方程;
(2)M,N是椭圆C上非顶点的两点,满足OM∥AP,ON∥BP,求证:三角形MON的面积是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且λSn=λ﹣an , 其中λ≠0且λ≠﹣1.
(1)证明:{an}是等比数列,并求其通项公式;
(2)若 ,求λ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中点,E,F分别为PD,PC的中点.
(Ⅰ)求证:AE⊥平面PCD;
(Ⅱ)求二面角B﹣PA﹣C的余弦值;
(Ⅲ)在棱PB上是否存在点M,使得CM∥平面AEF?若存在,求 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 是椭圆 的右准线,若椭圆的离心率为 ,右准线方程为x=2.
(1)求椭圆Γ的方程;
(2)已知一直线AB过右焦点F(c,0),交椭圆Γ于A,B两点,P为椭圆Γ的左顶点,PA,PB与右准线交于点M(xM , yM),N(xN , yN),问yMyN是否为定值,若是,求出该定值,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +aln(x﹣1)(a∈R).
(1)若函数f(x)在区间[2,+∞)上是单调递增函数,试求实数a的取值范围;
(2)当x∈[2,+∞)时,求证: ≤2ln(x﹣1)≤2x﹣4;
(3)求证: + +…+ <lnn<1+ +…+ (n∈N*且n≥2).

查看答案和解析>>

同步练习册答案