精英家教网 > 高中数学 > 题目详情
10.已知集合A={x∈N+|$\frac{4}{x-4}$∈Z},则集合A中元素的个数为(  )
A.3B.4C.5D.6

分析 将符合条件的x的值代入$\frac{4}{x-4}$计算即可.

解答 解:x=2时:$\frac{4}{2-4}$=-2,
x=3时:$\frac{4}{3-4}$=-4,
x=5时:$\frac{4}{5-4}$=4,
x=6时:$\frac{4}{6-4}$=2,
x=8时:$\frac{4}{8-4}$=1,
故选:C.

点评 本题考查了元素和集合的关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.(理) 曲线C:y=x3(x≥0)在点x=1处的切线为l,则由曲线C、直线l及x轴围成的封闭图形的面积是(  )
A.1B.$\frac{1}{12}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知下列各组命题,其中p是q的充分必要条件的是(  )
A.p:m≤-2或m≥6;q:y=x2+mx+m+3有两个不同的零点
B.p:$\frac{f(-x)}{f(x)}$=1;q:y=f(x)是偶函数
C.p:cos α=cos β;q:tan α=tan β
D.p:A∩B=A;q:A⊆U,B⊆U,∁UB⊆∁UA

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数$f(x)=cos(2x-\frac{4π}{3})+2{cos^2}x$
(1)把函数f(x)的图象向右平移$\frac{π}{2}$个单位,再向下平移$\frac{3}{2}$个单位得到函数g(x)的图象,求函数g(x)在区间$[{-\frac{π}{4},\frac{π}{6}}]$上的最小值,并求出此时x的值;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c.若$f(B+C)=\frac{3}{2},b+c=2$.求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图示),在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知0<α<β<$\frac{π}{2}$,sinα=$\frac{3}{5}$,cos(α-β)=$\frac{12}{13}$,求cosβ的值;
(2)在△ABC中,sinA-cosA=$\frac{2}{3}$,求cos2A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知-个三棱锥与一个四棱锥,它们的所有棱为1,将三棱锥与四棱锥的侧面粘在一起使之完全重合,则所得到的多面体是(  )
A.五面体B.六面体C.七面体D.八面体

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,直线l过椭圆C的右焦点F,且交椭圆C于A,B两点,已知点D($\frac{5}{2}$,0),连结BD,过点A作垂直于y轴的直线l1,设直线l1与直线BD交于一点P,是否存在一条定直线l2,使得点P恒在直线l2上?若存在,请求出直线l2的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=ex-ax2-x.
(1)当a=$\frac{1}{2}$时,证明:f(x)是R上的增函数;
(2)当x≥0时,f(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案