【题目】设数列{an}的前n项和为Sn , 已知a1=1, ,n∈N* .
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有 .
【答案】
(1)解:当n=1时, ,解得a2=4
(2)解: ①
当n≥2时, ②
①﹣②得
整理得nan+1=(n+1)an+n(n+1),即 ,
当n=1时,
所以数列{ }是以1为首项,1为公差的等差数列
所以 =n,即
所以数列{an}的通项公式为 ,n∈N*
(3)证明:因为 (n≥2)
所以 = .
当n=1,2时,也成立
【解析】(1)利用已知a1=1, ,n∈N* . 令n=1即可求出;(2)利用an=Sn﹣Sn﹣1(n≥2)即可得到nan+1=(n+1)an+n(n+1),可化为 , .再利用等差数列的通项公式即可得出;(3)利用(2),通过放缩法 (n≥2)即可证明.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2cos2x﹣cos(2x﹣).
(1)求f(x)的周期和最大值;
(2)已知△ABC中,角A.B.C的对边分别为A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某个产品有若干零部件构成,加工时需要经过7道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系,若加工工序必须要在工序完成后才能开工,则称为的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:
工序 | |||||||
加工时间 | 3 | 4 | 2 | 2 | 2 | 1 | 5 |
紧前工序 | 无 | 无 |
现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是( )
(假定每道工序只能安排在一台机器上,且不能间断.)
A. 11个小时 B. 10个小时 C. 9个小时 D. 8个小时
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(坐标系与参数方程选做题)
已知曲线C的参数方程为 (t为参数),C在点(1,1)处的切线为l,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l的极坐标方程为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是某设计师设计的型饰品的平面图,其中支架,,两两成,,,且.现设计师在支架上装点普通珠宝,普通珠宝的价值为,且与长成正比,比例系数为(为正常数);在区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为,且与的面积成正比,比例系数为.设,.
(1)求关于的函数解析式,并写出的取值范围;
(2)求的最大值及相应的的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣4:坐标系与参数方程
在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为 ,直线l的极坐标方程为 ,且点A在直线l上.
(1)求a的值及直线l的直角坐标方程;
(2)圆C的参数方程为 ,试判断直线l与圆C的位置关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com