精英家教网 > 高中数学 > 题目详情
如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰三角形,AC=2,BB1=3,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角的余弦;
(2)在线段AA1上取一点F,问AF为何值时,CF⊥平面B1DF?

【答案】分析:(1)以B点为原点,BA、BC、BB1分别为x、y、z轴建立空间直角坐标系,用坐标表示点,进而可表示向量,利用向量的数量积可求直线BE与A1C所成的角的余弦;
(2)要使得CF⊥平面B1DF,只需CF⊥B1F,由=0可建立方程,从而得解.
解答:解:(1)因为直三棱柱ABC-A1B1C1中,BB1⊥面ABC,∠ABC=
以B点为原点,BA、BC、BB1分别为x、y、z轴建立如图所示空间直角坐标系,…(2分)
因为AC=2,∠ABC=90°,所以AB=BC=
从而B(0,0,0),A(,0,0),C(0,,0),
B1(0,0,3),A1,0,3),C1(0,,3),D(,3),E(0,).
所以
,且
所以cosθ=…(5分)
所以直线BE与A1C所成的角的余弦为.…(6分)
(2)设AF=x,则F(,0,x),,…(8分)

所以,…(9分)
要使得CF⊥平面B1DF,只需CF⊥B1F,由=2+x(x-3)=0,有x=1或x=2,…(11分)
故当AF=1,或AF=21时,CF⊥平面B1DF.…(12分)
点评:本题的考点是用空间向量求直线间的夹角与距离,主要考查线线角及线面垂直问题,关键是构建空间直角坐标系,利用向量的数量积求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,侧棱AA1=1,侧面AA1B1B的两条对角线交于点D,B1C1的中点为M,求证:CD⊥平面BDM.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D为A1C1的中点,E为B1C的中点.
(1)求直线BE与A1C所成的角;
(2)在线段AA1中上是否存在点F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求线段MN的长;
(Ⅱ)求证:MN∥平面ABB1A1
(Ⅲ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中点.
(Ⅰ)证明:A1C1∥平面ACD;
(Ⅱ)求异面直线AC与A1D所成角的大小;
(Ⅲ)证明:直线A1D⊥平面ADC.

查看答案和解析>>

同步练习册答案