精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)当时,求函数的单调区间;

2)是否存在实数,使恒成立,若存在,求出实数的取值范围;若不存在,说明理由.

【答案】(1)函数的单调增区间为,单调减区间为

2)当时,使恒成立.

【解析】试题分析:(1)借助题设条件运用导数的知识;(2)借助题设运用导数的知识求解探求.

试题解析:

1)函数的定义域为

时,

,得,或

,得

故函数的单调递增区间为,单调递减区间为

时, 恒成立,

故函数的单调递增区间为.

2恒成立等价于恒成立,

时,即当时,

内不能恒成立,

时,即当时,则

内不能恒成立,

时,即当时,

解得

时,

时, .

所以

解得.

综上,当时, 内恒成立,即恒成立,

所以实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)写出曲线的直角坐标方程;

(2)已知点的直角坐标为,直线与曲线相交于不同的两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2 ,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2 , 它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在高三抽取了500名学生,记录了他们选修A、B、C三门课的选修情况,如表:

科目

学生人数

A

B

C

120

60

70

50

150

50

(Ⅰ)试估计该校高三学生在A、B、C三门选修课中同时选修2门课的概率.

(Ⅱ)若该高三某学生已选修A,则该学生同时选修B、C中哪门的可能性大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

若平面α内的直线l垂直于平面β内的任意直线,则α⊥β

若平面α内的任一直线都平行于平面β,则α∥β

若平面α垂直于平面β,直线l在平面α内,则l⊥β

若平面α平行于平面β,直线l在平面α内,则l∥β.

其中正确命题的个数是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为 的圆过点,且圆心在直线 .

(1)求圆心为的圆的标准方程;

(2)过点 作圆的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等差数列{an},满足|a10a11|>a10a11 , 且a102<a112 , Sn为其前n项和,则(
A.a8+a12>0
B.S1 , S2 , …S19都小于零,S10为Sn的最小值
C.a8+a13<0
D.S1 , S2 , …S20都小于零,S10为Sn的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线 的准线上,记的焦点为,过点且与轴垂直的直线与抛物线交于 两点,则线段的长为( )

A. 4 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在实数a,使得函数y=cos2x+asinx+ 在闭区间[0,π]的最大值是0?若存在,求出对应的a的值;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案