精英家教网 > 高中数学 > 题目详情
已知⊙O和⊙O内一点P,过P的直线交⊙O于A、B两点,若PA•PB=24,OP=5,则⊙O的半径长为
 
考点:与圆有关的比例线段
专题:直线与圆
分析:设⊙O的半径长为r,由题设条件利用相交弦定理得到(r-5)•(r+5)=PA•PB=24,由此能求出结果.
解答: 解:设⊙O的半径长为r,
∵⊙O和⊙O内一点P,过P的直线交⊙O于A、B两点,
PA•PB=24,OP=5,
∴(r-5)•(r+5)=PA•PB=24,
∴r2-25=24,即r2=49,
解得r=7.
故答案为:7.
点评:本题考查圆的半径的求法,是中档题,解题时要注意相交弦定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C两焦点坐标分别为F1(-
3
,0)
F2(
3
,0)
,且经过点P(
3
1
2
)

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点A(0,-1),直线l与椭圆C交于两点M,N.若△AMN是以A为直角顶点的等腰直角三角形,试求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是边长为1百米的正方形区域,现规划建造一块景观带△ECF,其中动点E、F分别在CD、BC上,且△ECF的周长为常数a(单位:百米).
(1)求景观带面积的最大值;
(2)当a=2时,请计算出从A点欣赏此景观带的视角(即∠EAF).

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2-(m+2)x+m+5在区间(2,4)内有且只有一个零点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足
y≤x
x+y≤2
y≥0
,那么z=x+3y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
1≤x≤2
2x-1≤y≤2x
,则
y
x
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x2+y2≤4
x-y+2≥0
y≥0
,则目标函数z=2x+y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的序号为
 

①函数y=ln(3-x)的定义域为(-∞,3];
②定义在[a,b]上的偶函数f(x)=x2+(a+5)x+b最小值为5;
③若命题p:对?x∈R,都有x2-x+2≥0,则命题¬p:?x∈R,有x2-x+2<0;
④命题“函数f(x)在x=x0处有极值,则f′(x)=0”的逆命题是真命题.
⑤函数f(x)=lgx-
1
x
的零点所在的区间是(
1
10
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一个空间几何体的正视图、侧视图、俯视图都是半径等于5的圆,那么这个空间几何体的表面积等于(  )
A、100π
B、
100π
3
C、25π
D、
25π
3

查看答案和解析>>

同步练习册答案