精英家教网 > 高中数学 > 题目详情
12.已知$a={log_3}0.5,b={log_{0.3}}0.2,c={0.5^{0.3}}$,则(  )
A.a>c>bB.b>c>aC.b>a>cD.c>a>b

分析 利用对数函数、指数函数的单调性求解.

解答 解:∵$a={log_3}0.5,b={log_{0.3}}0.2,c={0.5^{0.3}}$,
∴a=log30.5<log31=0,
b=log0.30.2>log0.30.3=1,
0<c=0.50.3<0.50=1,
∴b>c>a.
故选:B.

点评 本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数的单调性的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如图所示,已知A,B是单位圆上两点且|AB|=$\sqrt{3}$,设AB与x轴正半轴交于点C,α=∠AOC,β=∠OCB,则sinαsinβ+cosαcosβ=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则f(0)=$-\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在直角坐标系xOy中,已知曲线${C_1}:\left\{{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=t-\frac{1}{t}}\end{array}}\right.$(t为参数),曲线${C_2}:\left\{{\begin{array}{l}{x=acosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数,a>1),若C1恰好经过C2的焦点,则a的值为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{1}{3}{x^3}-{x^2}+cx+d,({c,d∈R})$,函数f(x)的图象记为曲线C.
(1)若函数f(x)在[0,+∞)上单调递增,求c的取值范围;
(2)若函数y=f(x)-m有两个零点α,β(α≠β),且x=α为f(x)的极值点,求2α+β的值;
(3)设曲线C在动点A(x0,f(x0))处的切线l1与C交于另一点B,在点B处的切线为l2,两切线的斜率分别为k1,k2,是否存在实数c,使得$\frac{k_1}{k_2}$为定值?若存在,求出c的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.阅读下边的程序框图,运行相应的程序,则输出v的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,△PCD为等边三角形,底面ABCD为直角梯形,AB⊥AD,AD∥BC,AD=2BC=2,AB=$\sqrt{3}$,点E、F分别为AD、CD的中点.
(1)求证:直线BE∥平面PCD;
(2)求证:平面PAF⊥平面PCD;
(3)若PB=$\sqrt{3}$,求直线PB与平面PAF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$tanθ=\frac{1}{2}$,则$tan({\frac{π}{4}-2θ})$=(  )
A.7B.-7C.$\frac{1}{7}$D.$-\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a,b∈R,集合A={1,a+b,a},B={0,$\frac{b}{a}$,b},若A=B,则b-a(  )
A.2B.-1C.1D.-2

查看答案和解析>>

同步练习册答案