精英家教网 > 高中数学 > 题目详情

【题目】很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为(

A.B.C.D.

【答案】B

【解析】

根据程序框图列举出程序的每一步,即可得出输出结果.

输入不成立,是偶数成立,则

不成立,是偶数不成立,则

不成立,是偶数成立,则

不成立,是偶数成立,则

不成立,是偶数成立,则

不成立,是偶数成立,则

成立,跳出循环,输出i的值为.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某啤酒厂要将一批鲜啤酒用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,运费由厂家承担.若厂家恰能在约定日期(××日)将啤酒送到,则城市乙的销售商一次性支付给厂家40万元;若在约定日期前送到,每提前一天销售商将多支付给厂家2万;若在约定日期后送到,每迟到一天销售商将少支付给厂家2万元.为保证啤酒新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送.已知下表内的信息:

汽车行驶路线

在不堵车的情况下到达城市乙所需时间(天)

在堵车的情况下到达城市乙所需时间(天)

堵车的概率

运费(万元)

公路1

1

4

2

公路2

2

3

1

1)记汽车选择公路1运送啤酒时厂家获得的毛收入为X(单位:万元),求X的分布列和EX

2)若,选择哪条公路运送啤酒厂家获得的毛收人更多?

(注:毛收入=销售商支付给厂家的费用-运费).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知函数f(x)=|xa|+|x-2|.

(1)a=-3时,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调区间;

2)若曲线在点(10)处的切线为l : xy10,求ab的值;

3)若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体..

1)求证:

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图像上有动点,函数图像上有动点.两点同时从纵坐标的初始位置出发,沿着各自函数图像向右上方运动至两点的纵坐标值再次相等,且始终满足,则在此运动过程中两点的距离的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者,为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据:

有接触史

无接触史

总计

有武汉旅行史

无武汉旅行史

总计

1)请将上面列联表填写完整,并判断能否在犯错误的概率不超过的前提下,认为有武汉旅行史与有确诊病例接触史有关系?

2)已知在无武汉旅行史的名患者中,有名无症状感染者.现在从无武汉旅行史的名患者中,选出名进行病例研究,求人中至少有名是无症状感染者的概率.

下面的临界值表供参考:

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在等腰中,斜边为直角边上的一点,将沿直线折叠至的位置,使得点在平面外,且点在平面上的射影在线段上设,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案