精英家教网 > 高中数学 > 题目详情
8.若AB是过椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1中心的弦,F1为椭圆的焦点,则△F1AB面积的最大值为(  )
A.6B.12C.24D.48

分析 设直线AB的方程为:y=kx,与椭圆方程联立,解得A,B的纵坐标.利用△FAB面积S=$\frac{1}{2}$|OF|•|x1-x2|即可得出.

解答 解:设直线AB的方程为:y=kx,
联立$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{25}=1}\end{array}\right.$,
化为(25+16k2)x2=400,
解得x=±$\frac{20}{\sqrt{25+16{k}^{2}}}$.
∴△FAB面积S=$\frac{1}{2}$|OF|•|x1-x2|=$\frac{1}{2}$×3×$\frac{40}{\sqrt{25+16{k}^{2}}}$≤12,
当k=0即AB为椭圆的短轴时,△FAB面积取得最大值12.
故选:B.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立解得交点、三角形的面积计算公式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知$a={0.6^π},b={log_π}^{0.6},c={π^{0.6}}$,则a,b,c的大小关系是(  )
A.a<c<bB.a<b<cC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在△ABC中,$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,$\overrightarrow{CA}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow{b}$,已知点P,Q分别为线段CA,CB(不含端点)上的动点,PQ与CG交于H,且H为线段CG中点,若$\overrightarrow{CP}$=m$\overrightarrow{a}$,$\overrightarrow{CQ}$=n$\overrightarrow{b}$,则$\frac{1}{m}$+$\frac{1}{n}$=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则 x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”.
B.“x=1”是“x2-3x+2=0”的充分必要条件.
C.命题p:“?x∈R,sinx+cosx≤$\sqrt{2}$”是真命题
D.若¬(p∧q)为真命题,则p、q至少有一个为假命题.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线C1:$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=6+\sqrt{2}sinθ\end{array}\right.$,(θ为参数),曲线C2:$\frac{x^2}{10}+{y^2}=1$.
(1)写出曲线C1的普通方程,曲线C2的参数方程;
(2)在曲线C1,C2上分别取点P,Q,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算10lg3+log525=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.平面向量$\overrightarrow{OA}$⊥$\overrightarrow{AB}$,|$\overrightarrow{OA}$|=2,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数既是奇函数又是偶函数的是(  )
A.$f(x)=x+\frac{1}{x}$B.$f(x)=\frac{1}{x^2}$
C.$f(x)=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$D.$f(x)=\left\{\begin{array}{l}\frac{1}{2}{x^2}+1,x>0\\-\frac{1}{2}{x^2}-1,x<0\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将一个直角三角形绕斜边所在的直线旋转一周,所得的几何体包括(  )
A.一个圆台B.一个圆锥C.一个圆柱D.两个圆锥

查看答案和解析>>

同步练习册答案