A. | 6 | B. | 12 | C. | 24 | D. | 48 |
分析 设直线AB的方程为:y=kx,与椭圆方程联立,解得A,B的纵坐标.利用△FAB面积S=$\frac{1}{2}$|OF|•|x1-x2|即可得出.
解答 解:设直线AB的方程为:y=kx,
联立$\left\{\begin{array}{l}{y=kx}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{25}=1}\end{array}\right.$,
化为(25+16k2)x2=400,
解得x=±$\frac{20}{\sqrt{25+16{k}^{2}}}$.
∴△FAB面积S=$\frac{1}{2}$|OF|•|x1-x2|=$\frac{1}{2}$×3×$\frac{40}{\sqrt{25+16{k}^{2}}}$≤12,
当k=0即AB为椭圆的短轴时,△FAB面积取得最大值12.
故选:B.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立解得交点、三角形的面积计算公式,考查了计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | a<c<b | B. | a<b<c | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 命题“若x2-3x+2=0,则 x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”. | |
B. | “x=1”是“x2-3x+2=0”的充分必要条件. | |
C. | 命题p:“?x∈R,sinx+cosx≤$\sqrt{2}$”是真命题 | |
D. | 若¬(p∧q)为真命题,则p、q至少有一个为假命题. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $f(x)=x+\frac{1}{x}$ | B. | $f(x)=\frac{1}{x^2}$ | ||
C. | $f(x)=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$ | D. | $f(x)=\left\{\begin{array}{l}\frac{1}{2}{x^2}+1,x>0\\-\frac{1}{2}{x^2}-1,x<0\end{array}\right.$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com