精英家教网 > 高中数学 > 题目详情

已知点A(2,0),B(0,3),C(-1,-2),则平行四边形ABCD的顶点D的坐标为


  1. A.
    (1,-5)
  2. B.
    (-3,1)
  3. C.
    (1,-3)
  4. D.
    (-5,1)
A
分析:设出点D,利用向量的坐标的求法求出两个向量的坐标,再利用向量相等的坐标关系列出方程组,求出点的坐标.
解答:设D(x,y)则
在平行四边形ABCD中
=(-2,3),)=(-1-x,-2-y)
又∵=

解得
则平行四边形ABCD的顶点D的坐标为(1,-5).
故选A.
点评:本题考查向量坐标的求法:终点坐标减去始点坐标;向量相等的坐标满足的条件.根据题意找出=解题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(-2,0),B(2,0),若点P(x,y)在曲线
x2
16
+
y2
12
=1
上,则|PA|+|PB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区二模)在平面直角坐标系x0y中,已知点A(-
2
,0),B(
2
,0
),E为动点,且直线EA与直线EB的斜率之积为-
1
2

(Ⅰ)求动点E的轨迹C的方程;
(Ⅱ)设过点F(1,0)的直线l与曲线C相交于不同的两点M,N.若点P在y轴上,且|PM|=|PN|,求点P的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,0),B(2,0),如果直线3x-4y+m=0上有且只有一个点P使得 
PA
PB
=0
,那么实数 m 等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知点A(-2,0),B (0,2
3
)
,C(2cosθ,sinθ),其中θ∈[0,
π
2
]

(1)若
AB
OC
,求tanθ的值;
(2)设点D(1,0),求
AC
 •  
BD
的最大值;
(3)设点E(a,0),a∈R,将
OC
 •  
CE
表示成θ的函数,记其最小值为f(a),求f(a)的表达式,并求f(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,0)、B(0,2),C是圆x2+y2=1上一个动点,则△ABC的面积的最小值为
2-
2
2-
2

查看答案和解析>>

同步练习册答案