精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左右顶点是双曲线的顶点,且椭圆的上顶点到双曲线的渐近线的距离为.

(1)求椭圆的方程;

(2)若直线相交于两点,与相交于两点,且,求的取值范围.

【答案】(1);(2).

【解析】

由双曲线的顶点可得,求出双曲线的渐近线方程,运用点到直线的距离公式可得,即可得到椭圆方程

设直线的方程为,联立双曲线方程,消去,运用韦达定理和判别式大于,结合向量的数量积的坐标表示,求得的关系式,再由直线方程和椭圆方程联立,运用韦达定理和弦长公式,计算即可得到所求

(1)由题意可知:

又椭圆的上顶点为

双曲线的渐近线为:

由点到直线的距离公式有:

所以椭圆的方程为

(2)易知直线的斜率存在,设直线的方程为,代入,消去并整理得:

要与相交于两点,则应有:

则有:.

.

又:,所以有:

,②

,代入,消去并整理得:

要有两交点,则 .③

由①②③有:

.

有:

.

代入有:

.

,令,

,.

所以内恒成立,故函数内单调递增,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点为圆的圆心, 是圆上的动点,点在圆的半径上,且有点上的点,满足.

1)当点在圆上运动时,求点的轨迹方程;

2)若斜率为的直线与圆相切,直线与(1)中所求点的轨迹交于不同的两点是坐标原点,且时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (a>0,且a≠1).
①若a= ,则函数f(x)的值域为
②若f(x)在R上是增函数,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面为矩形,侧棱PA⊥底面ABCD,且PA=AD,E,F分别是线段PA,PD的中点,H在线段AB上.

(1)求证:PC⊥AF;

(2)若平面PBC∥平面EFH,求证H是AB的中点;

(3)若AD=4,AB=2,求点D到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域上既是偶函数又在(0,+∞)上单调递减的是(
A.y=x2
B.y=x+1
C.y=﹣lg|x|
D.y=﹣2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=asinx﹣ cosx(a∈R)的图象经过点( ,0).
(1)求f(x)的最小正周期;
(2)若x∈[ ],求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面,是边长为2的等边三角形,的中点,且

(Ⅰ)求证:平面

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,斜三棱柱ABC﹣A1B1C1的侧面AA1C1C是菱形,侧面ABB1A1⊥侧面AA1C1C,A1B=AB=AA1=2,△AA1C1的面积为 ,且∠AA1C1为锐角.
(I) 求证:AA1⊥BC1
(Ⅱ)求锐二面角B﹣AC﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的焦距为 ,且过点 ,设 上的两个动点,线段 的中点 的横坐标为 ,线段 的中垂线交椭圆 两点.

(1)求椭圆 的方程;

(2)设点纵坐标为m,求直线的方程,并求出 的取值范围.

查看答案和解析>>

同步练习册答案