精英家教网 > 高中数学 > 题目详情
已知关于x的方程x2+mx+m+n=0的两根分别为椭圆和双曲线的离心率.记分别以m,n为横、纵坐标的点A(m,n)表示的平面区域D.若函数y=loga(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为
 
考点:双曲线的简单性质,椭圆的简单性质
专题:计算题,函数的性质及应用
分析:根据关于x的方程x2+mx+m+n=0的两根分别为椭圆和双曲线的离心率,可得方程x2+mx+m+n=0的两根,一根属于(0,1),另一根属于(1,+∞),从而可确定平面区域为D,进而利用函数y=loga(x+4)(a>1)的图象上存在区域D上的点,可求实数a的取值范围.
解答: 解:构造函数f(x)=x2+mx+m+n
∵关于x的方程x2+mx+m+n=0的两根分别为椭圆和双曲线的离心率
∴方程x2+mx+m+n=0的两根,一根属于(0,1),另一根属于(1,+∞)
∴f(0)>0,f(1)<0,∴
m+n>0
1+2m+n<0

∵直线m+n=0,1+2m+n=0的交点坐标为(-1,1)
∴要使函数y=loga(x+4)(a>1)的图象上存在区域D上的点,则必须满足1<loga(-1+4)
∴loga3>1=logaa,
∵a>1
∴1<a<3
故答案为:(1,3).
点评:本题以方程根为载体,考查椭圆、双曲线的几何性质,考查数形结合的数学思想,确定平面区域是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x∈R|m2x2-n=0},当m,n满足什么条件时,集合A是有限集?无限集?空集?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数r(x)=x2+ax+b(a,b为常数,a∈R,b∈R)的一个零点是-a,函数g(x)=lnx,e是自然对数的底数.设函数f(x)=r(x)-g(x).
(Ⅰ)过坐标原点O作曲线y=f(x)的切线,证明切点的横坐标为1;
(Ⅱ)令F(x)=
f(x)
ex
,若函数F(x)在区间(0,1]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1-t,1-t,t),
b
=(2,t,t),则|
b
-
a
|的最小值是(  )
A、
5
5
B、
55
5
C、
3
5
5
D、
11
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m2(lnx)2+(-3m+1)lnx在区间(e,e2)上是单调增函数,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P是曲线y=x2-lnx任意一点,则点P到直线y=x-2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),当x∈[-1,1]时,f(x)=x2,函数g(x)=
loga(x-1)x>1
2xx≤1
,若函数h(x)=f(x)-g(x)在区间[-5,5]上恰有8个零点,则a的取值范围为
(  )
A、(2,4)
B、(2,5)
C、(1,5)
D、(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是平行四边形,PA⊥平面ABCD,AC⊥AB,点E是PD的中点.
(I)求证:PB⊥AC;
(Ⅱ)求证:PB∥平面ACE;
(Ⅲ)求三棱锥E-ABC与四棱锥P-ABCD的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD垂足为H,PH是四棱锥的高,E为AD的中点.
(1)证明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直线PA与PEH平面所成角的正弦值.

查看答案和解析>>

同步练习册答案