【题目】在平面直角坐标系xOy中,曲线C的参数方程为 (α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为 . (Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;
(Ⅱ)设点P为曲线C上任意一点,求点P到直线l的距离的最大值.
科目:高中数学 来源: 题型:
【题目】已知N为自然数集,集合P={1,4,7,10,13},Q={2,4,6,8,10},则P∩ 等于( )
A.{1,7,13}
B.{4,10}
C.{1,7}
D.{0,1,3}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥 中,平面 平面 , 为等边三角形, 且 , 分别为 的中点.
(1)求证: 平面 .
(2)求证:平面 平面 .
(3)求三棱锥 的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分别为BC,CD的中点,以A为圆心,AD为半径的圆交AB于G,点P在 上运动(如图).若 =λ +μ ,其中λ,μ∈R,则6λ+μ的取值范围是( )
A.[1, ]
B.[ ,2 ]
C.[2,2 ]
D.[1,2 ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四边形ABCD是一个梯形,CD∥AB , CD=BO=1,△AOD为等腰直角三角形,O为AB的中点,试求梯形ABCD水平放置的直观图的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥 中,平面PAD⊥ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.
求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:x0∈(0,+∞),3 +x0=2016,命题q:a∈(0,+∞),f(x)=|x|﹣ax,(x∈R)为偶函数,那么,下列命题为真命题的是( )
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)对任意的x∈(﹣ , )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是 . ① f(﹣ )<f(﹣ )
② f( )<f( )
③f(0)>2f( )
④f(0)> f( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com