精英家教网 > 高中数学 > 题目详情

三棱锥S-ABC的顶点S在底面的射影H是△ABC的垂心(在△ABC的内部),则


  1. A.
    三条侧棱长相等
  2. B.
    三个侧面与底面所成的角相等
  3. C.
    H到△ABC三边的距离相等
  4. D.
    点A在平面SBC上的射影是△SBC的垂心
D
分析:根据条件“三棱锥S-ABC的顶点S在底面的射影H是△ABC的垂心”可以得到此三棱锥的三条相对的棱两两垂直,过任一个顶点向对面作垂线,根据线面垂直的性质定理可得到垂足是对面的三角形的高线的交点,从而得到垂心.
解答:解:∵三棱锥S-ABC的顶点S在底面的射影H是△ABC的垂心,
∴三棱锥的三条相对的棱两两垂直,
反之,若三棱锥的三条相对的棱两两垂直,
则有三棱锥任意一个顶点在对面的射影是对面三角形的垂心,
过顶点A向平面SBC作垂线,垂足为H,如图,
根据线面垂直的性质定理,得到垂足H是△SBC的高线的交点,
∴点A在平面SBC上的射影必是△SBC的垂心,
故选D.
点评:本题考查三角形的垂心,考查棱锥的结构特征,是一个比较简单的综合题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设三棱锥P—ABC的顶点P在底面ABC内射影O(在△ABC内部,即过P作PO⊥底面ABC,交于O),且到三个侧面的距离相等,则O是△ABC的(    )

A.外心               B.垂心               C.内心               D.重心

查看答案和解析>>

科目:高中数学 来源: 题型:

设三棱锥P—ABC的顶点P在底面ABC内射影O(在△ABC内部,即过P作PO⊥底面ABC,交于O),且到三个侧面的距离相等,则O是△ABC的(    )

A.外心               B.垂心               C.内心               D.重心

查看答案和解析>>

科目:高中数学 来源: 题型:

设三棱锥P—ABC的顶点P在底面ABC内射影O(在△ABC内部,即过P作PO⊥底面ABC,交于O),且到三个侧面的距离相等,则O是△ABC的(    )

A.外心               B.垂心               C.内心               D.重心

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设三棱锥P—ABC的顶点P在底面ABC内射影O(在△ABC内部,即过P作PO⊥底面ABC,交于O),且到三个侧面的距离相等,则O是△ABC的


  1. A.
    外心
  2. B.
    垂心
  3. C.
    内心
  4. D.
    重心

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

“三棱锥P-ABC的顶点P在底面内的射影恰在底面三角形的一边上”是“△ABC为直角三角形”的


  1. A.
    充分非必要条件
  2. B.
    必要非充分条件
  3. C.
    充要条件
  4. D.
    既非充分也非必要的条件

查看答案和解析>>

同步练习册答案