精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,点P到两点(0,-
3
),(0,
3
)的距离之和等于4,设点P的轨迹为C.
(1)写出C的方程;
(2)设直线y=kx+1与C交于A,B两点.k为何值时以AB为直径的圆经过原点O?此时|AB|的值是多少?
(1)由条件知:P点的轨迹为焦点在y轴上的椭圆,其中c=
3
,a=2,
∴b2=a2-c2=1.
故轨迹C的方程为:x2+
y2
4
=1

(2)设A(x1,y1),B(x2,y2
y=kx+1
x2+
y2
4
=1
,消去y,
可得(kx+1)2+4x2=4,即(k2+4)x2+2kx-3=0
△=16k2+48>0,x1+x2=-
2k
k2+4
,x1x2=-
3
k2+4

∵以AB为直径的圆经过原点O,
OA
OB

∴x1x2+y1y2=0,
∴(k2+1)x1x2+k(x1+x2)+1=0,
∴(k2+1)(-
3
k2+4
)+k•(-
2k
k2+4
)+1=0,
∴k=±
1
2

∴k=±
1
2
时,以AB为直径的圆经过原点O,
|AB|=
1+
1
4
(x1+x2)2-4x1x2
=
4
65
17
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知mn≠0,则方程mx2+ny2=1与mx+ny2=0在同一坐标系下的图形可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三条直线a、b、c两两平行,直线a、b间的距离为p,直线b、c间的距离为
p
2
,A、B为直线a上的两个定点,且AB=2p,MN是在直线b上滑动的长度为2p的线段.
(1)建立适当的平面直角坐标系,求△AMN的外心C的轨迹E;
(2)当△AMN的外心C在E上什么位置时,使d+BC最小?最小值是多少?(其中,d为外心C到直线c的距离)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设P的轨迹是曲线C,满足:点P到F(-2,0)的距离与它到直线l:x=-4的距离之比是常数,又点M(2,-
2
)
在曲线C上,点N(-1,1)在曲线C的内部.
(1)求曲线C的方程;
(2)|PN|+
2
|PF|
的最小值,并求此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点P与定点F(1,0)的距离和它到定直线x=5的距离比是
1
5
,则点P的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1的棱长为1,点M在AB上,且AM=
1
3
,点P是平面ABCD上的动点,且动点P到直线A1D1的距离与动点P到点M的距离的平方差为1,则动点的轨迹是(  )
A.圆B.抛物线C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点O(0,0),A(3,0),动点P到定点O距离与到定点A的距离的比值是
1
2

(1)记动点P的轨迹为曲线D.求曲线D的方程,并说明方程表示的曲线;
(2)若M是圆E:(x-2)2+(y-4)2=64上任意一点,过M作曲线D的切线,切点是N,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与y轴相切且和半圆x2+y2=4(0≤x≤2)内切的动圆圆心的轨迹方程是(  )
A.y2=4(x+1)(0<x≤1)B.y2=4(x-1)(0<x≤1)
C.y2=-4(x-1)(0<x≤1)D.y2=-2(x-1)(0<x≤1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知P是曲线y=2x2-1上的动点,定点A(0,-1),且点P不同于点A,若M点满足
PM
=2
MA
,求点M的轨迹方程.

查看答案和解析>>

同步练习册答案