精英家教网 > 高中数学 > 题目详情
函数f(x)=log2(x2-5x+4)的单调递减区间是
 
考点:复合函数的单调性
专题:函数的性质及应用
分析:令t=x2-5x+4>0,求得函数的定义域,本题即求函数t在定义域内的减区间,再利用二次函数的性质可得t在定义域内的减区间.
解答: 解:令t=x2-5x+4>0,求得x|x<1,或x>4,故函数的定义域为{x|x<1,或x>4},且f(x)=log2t,
故本题即求函数t在定义域内的减区间.
再利用二次函数的性质可得t=x2-5x+4在定义域{x|x<1,或x>4}内的减区间为(-∞,1),
故答案为:(-∞,1).
点评:本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在同一直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

高为
2
的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,底面ABCD的中心为O1,外接球的球心为O,则异面直线SO1与AB所成的最小角的余弦值为(  )
A、
2
4
B、
2
3
C、
10
10
D、
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(1-6a)x+a(x<1)
logax  (x≥1)
在R上单调递减,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果满足B=30°,AC=6,BC=k的△ABC恰有一个,那么k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xoy中,直线I的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
  (t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=
2
cos(θ+
π
4
).
(1)求直线I被曲线C所截得的弦长;
(2)若M(x,y)是曲线C上的动点,求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,例如[2]=2;[2.1]=2;[-2.2]=-3,这个函数[x]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用,那么[log21]+[log22]+[log23]+…+[log232]的值为(  )
A、15B、45
C、103D、258

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A、B、C所对的边分别为a、b、c,其周长4(
2
+1),且sinB+sinC=
2
sinA.
(1)求边BC的长;
(2)若△ABC的面积为3sinA,求cosA的值.

查看答案和解析>>

同步练习册答案