精英家教网 > 高中数学 > 题目详情
如图,在三棱锥中,的中点,平面,垂足落在线段上,已知
(Ⅰ)证明:
(Ⅱ)在线段上是否存在点M,使得二面角为直二面角?若存在,求
出AM的长;若不存在,请说明理由。(12分)
见解析
第一问中,利用由,D是BC的中点,得,又平面ABC,得,因为,所以平面PAD,故‘利用线面垂直的性质定理得到。
第二问中,利用在平面PAB内作于M,连接CM,由(1)中知,得平面BMC,
平面APC,所以平面平面APC,在中,,得,在中,
中,
所以,得
中,,得

从而
所以综上所述,存在点M符合题意AM=3
(1)证明:由,D是BC的中点,得
平面ABC,得,因为
所以平面PAD,故………….4分
(2)解:如图,在平面PAB内作于M,连接CM,由(1)中知,得平面BMC,
平面APC,所以平面平面APC,……….6分,
中,,得
中,
中,
所以,得
中,,得

从而………….10分
所以
综上所述,存在点M符合题意AM=3。…………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,四棱锥的底面是正方形,,点E在棱PB上。

(Ⅰ)求证:平面
(Ⅱ)当且E为PB的中点时,求AE与平
面PDB所成的角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四棱锥中,底面为矩形,
底面,点是棱的中点.
(1)证明:平面
(2)若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图 5,已知正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形,其中A与A '重合,且BB'<DD'<CC'.
(1)证明AD'//平面BB'C'C,并指出四边形AB'C'D’的形状;
(2)如果四边形中AB'C'D’中,,正方形的边长为
求平面ABCD与平面AB'C'D’所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

  在直三棱柱中,="2" ,.点分别是 ,的中点,是棱上的动点.
(I)求证:平面
(II)若//平面,试确定点的位置,
并给出证明;
(III)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示平面,为直线,下列命题中为真命题的是           (   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面,直线满足:,那么
;     ②;    ③;     ④
可由上述条件可推出的结论有      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是三条不同的直线,是三个不同的平面,现给出四个命题:
①若,则;               ②若,则
③若,则;            ④若,则
其中正确命题的序号是              。(把正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,多面体FE-ABCD中,ABCD和ACFE都是直角梯形,DC∥AB,AE∥CF,平面ACFE⊥平面ABCD,AD=DC=CF=2AE=,∠ACF=∠ADC=
(I)求证:BC⊥平面ACFE;
(II)求二面角B-FE-D的平面角的余弦值。

查看答案和解析>>

同步练习册答案