精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的方程为,其离心率,且短轴的个端点与两焦点组成的三角形面积为,过椭圆上的点轴的垂线,垂足为,点满足,设点的轨迹为曲线.

(1)求曲线的方程;

(2)若直线与曲线相切,且交椭圆于两点, ,记的面积为, 的面积为,求的最大值 .

【答案】(1) (2)

【解析】

(1)根据题意可得椭圆的方程为

,得根据代入法可得曲线的方程为(2)由题知直线的斜率存在,设直线的方程为与圆相切可得.将联立可得二次方程,然后由根与系数的关系及弦长公式可得,从而得到求得后再根据基本不等式求解即可得到所求

(1)依题意可得

解得椭圆方程为.

,得

代人椭圆方程得曲线的方程为

(2)由题知直线的斜率存在,设直线的方程为

与圆相切可得,即.

整理得

又直线与椭圆交于两点,

所以故得

.

.

当且仅当,即时,等号成立.

所以的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的定义域为,且对任意,有,且当时,

(Ⅰ)证明是奇函数;

(Ⅱ)证明上是减函数;

(III)若,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入(单位:万元)满足,乙城市收益Q与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).

(1)当甲城市投资50万元时,求此时公司总收益;

(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读:

已知,求的最小值.

解法如下:

当且仅当,即时取到等号,

的最小值为.

应用上述解法,求解下列问题:

(1)已知,求的最小值;

(2)已知,求函数的最小值;

(3)已知正数

求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P0-2),椭圆E 的离心率为F是椭圆E的右焦点,直线PF的斜率为2O为坐标原点.

1)求椭圆E的方程;

2)直线l被圆Ox2+y2=3截得的弦长为3,且与椭圆E交于AB两点,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y(单位:万只)与相成年份x(序号)的数据表和散点图(如图所示),根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数z(单位:个)关于x的回归方程.

(1)根据表中的数据和所给统计量,求y关于x的线性回归方程(参考统计量:);

(2)试估计:①该县第一年养殖山羊多少万只?

②到第几年,该县山羊养殖的数量与第一年相比缩小了?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察某种药物预防疾病的效果,进行动物试验,得到如下药物效果与动物试验列联表:

患病

未患病

总计

服用药

10

45

55

没服用药

20

30

50

总计

30

75

105

经过计算,,根据这一数据分析,下列说法正确的是

临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A. 有97.5%的把握认为服药情况与是否患病之间有关系

B. 有99%的把握认为服药情况与是否患病之间有关系

C. 有99.5%的把握认为服药情况与是否患病之间有关系

D. 没有理由认为服药情况与是否患病之间有关系

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次人才招聘会上,假定某毕业生赢得甲公司面试机会的概率为,赢得乙、丙两公司面试机会的概率均为,且三家公司是否让其面试是相互独立的,则该毕业生只赢得甲、乙两家公司面试机会的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为D,若函数满足条件:存在,使上的值域为,则称为“倍缩函数”,若函数为“倍缩函数”,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

同步练习册答案