精英家教网 > 高中数学 > 题目详情

【题目】执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为(  )

A.0,0
B.1,1
C.0,1
D.1,0

【答案】D
【解析】解:当输入的x值为7时,
第一次,不满足b2>x,也不满足x能被b整数,故b=3;
第二次,满足b2>x,故输出a=1;
当输入的x值为9时,
第一次,不满足b2>x,也不满足x能被b整数,故b=3;
第二次,不满足b2>x,但满足x能被b整数,故输出a=0
故选:D
【考点精析】解答此题的关键在于理解算法的条件结构的相关知识,掌握条件P是否成立而选择执行A框或B框.无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行.一个判断结构可以有多个判断框,以及对算法的循环结构的理解,了解在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,循环结构可细分为两类:当型循环结构和直到型循环结构.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知随机变量ξ的概率分布列为:

ξ

0

1

2

P

则Eξ= , Dξ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面中两条直线相交于点O,对于平面上任意一点M,若xy分别是M到直线的距离,则称有序非负实数对(xy)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列三个命题:

①若p=q=0,则“距离坐标”为(00)的点有且只有1个;

②若pq=0,且p+q≠0,则“距离坐标”为(pq的点有且只有2个;

③若pq≠0则“距离坐标”为pq的点有且只有4个.

上述命题中,正确命题的是______.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校对校园进行绿化,移栽香樟和桂花两种大树各2株,若香樟的成活率为,桂花的成活率为,假设每棵树成活与否是相互独立的.求:

Ⅰ)两种树各成活一株的概率;

Ⅱ)设ξ表示两种树成活的总株数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读右面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为(  )

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面的中点.

(1)求证:

(2)求证:

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汕头某通讯设备厂为适应市场需求,提高效益,特投入98万元引进世界先进设备奔腾6号,并马上投入生产.第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元.

请你根据以上数据,解决下列问题:(1)引进该设备多少年后,收回成本并开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出.问哪种方案较为合算?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<a<b,且a+b=1,则下列不等式中正确的是(
A.log2a>0
B.2ab
C.log2a+log2b<﹣2
D.2 +

查看答案和解析>>

同步练习册答案