精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中

(1)讨论函数零点的个数;

(2)若不等式在区间)上的解集为非空集合,求实数的取值范围.

【答案】(1)见解析;(2)

【解析】

(1)先求定义域,再求导,对a进行分类讨论,然后根据导数和函数单调性的关系即可求出单调区间. (2)由题意可得在上存在使 成立,即求的最小值小于等于,对a进行分类讨论,求出的最值,即可解出a的范围.

(1)函数的定义域为

①当,即时,

上单调递增,

②当,即时,可知函数上单调递减,在上单调递增,

此时的最小值为

,即时,恒大于0,此时函数没有零点;

,即时,函数有一个零点;

,即时,函数有两个零点.

综上可知,当时,函数没有零点;

时,函数有一个零点;

时,函数有两个零点.

(2)由(1)可知,当时,

函数上单调递增,

所以只需要

,显然成立,

,即时,

函数上单调递减,此时需要

,不等式无解;

,即时,

上单调递增,所以只需要

,显然成立,

,即时,

上单调递减,在上单调递增,

此时只需,解得.

综上可知实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的值为4,则判断框中应填入的条件是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 为等边三角形,且平面平面.

(Ⅰ)证明:

(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.

【答案】(Ⅰ)证明见解析;(Ⅱ) .

【解析】试题分析】(I)的中点为,连接.利用等腰三角形的性质和矩形的性质可证得,由此证得平面,故,故.(II) 可知是棱锥的高,利用体积公式求得,利用勾股定理和等腰三角形的性质求得的值,进而求得面积.

试题解析】

证明:(Ⅰ)取的中点为,连接

为等边三角形,∴.

底面中,可得四边形为矩形,∴

,∴平面

平面,∴.

,所以.

(Ⅱ)由面

平面,所以为棱锥的高,

,知

.

由(Ⅰ)知,∴.

.

,可知平面,∴

因此.

的中点,连结,则

.

所以棱锥的侧面积为.

型】解答
束】
20

【题目】已知圆经过椭圆 的两个焦点和两个顶点,点 是椭圆上的两点,它们在轴两侧,且的平分线在轴上, .

(Ⅰ)求椭圆的方程;

(Ⅱ)证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三统考结束后,分别从喜欢数学和不喜欢数学的学生中各随机抽取了10人的成绩,分数都是整数,得到如下茎叶图,但是喜欢数学和不喜欢数学的各缺失了一个数据.若已知不喜欢数学的10人成绩的中位数为75,且已知喜欢数学的10人中所缺失成绩是85分以上,但是不高于喜欢数学的10人的平均分.不喜欢数学和喜欢数学缺失的数据分别是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为落实国家“精准扶贫”政策,让市民吃上放心蔬菜,某企业于2017年在其扶贫基地投入100万元研发资金,用于蔬菜的种植及开发,并计划今后十年内在此基础上,每年投入的资金比上一年增长

(1)写出第年(2018年为第一年)该企业投入的资金数(万元)与的函数关系式,并指出函数的定义域

(2)该企业从第几年开始(2018年为第一年),每年投入的资金数将超过200万元?(参考数据)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题方程表示焦点在轴上的椭圆,命题方程表示双曲线.

(1)若命题是真命题,求实数的范围;

(2)若命题“”为真命题,“”是假命题,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB2BC1EDC的中点,F为线段EC上一动点.现将AFD沿AF折起,使平面ABD平面ABC.在平面ABD内过点DDKABK为垂足.设AKt,则t的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品在近30天内每件的销售价格p()与时间t()的函数关系是该商品的日销售量Q()与时间t()的函数关系是Q=-t40(0<t≤30tN)

(1)求这种商品的日销售金额的解析式;

(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

同步练习册答案