精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面为矩形,底面分别为的中点.

1)求证:平面

2)求证:平面平面

【答案】1)证明见解析.(2)证明见解析

【解析】

1)取中点,可证得,得到四边形为平行四边形,进而得到,由线面平行判定定理可证得结论;

(2)由线面垂直的性质、矩形的特点和线面垂直的判定定理可证得平面,由此得到,由等腰三角形三线合一得到,利用线面垂直的判定、面面垂直的判定定理,结合平行关系即可证得结论.

1)取中点,连结.

的中点,

又底面为矩形,中点,

四边形为平行四边形,

平面平面平面.

2底面平面

又底面为矩形,

平面平面

平面

中点,

平面平面

由(1)知:平面

平面平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度(单位:毫克/立方米)随着时间(单位:天)变化的函数关系式近似为,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.

(1)若一次喷洒1个单位的去污剂,则去污时间可达几天?

(2)若第一次喷洒1个单位的去污剂,6天后再喷洒个单位的去污剂,要使接下来的4天中能够持续有效去污,试求的最小值?(精确到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有1400名考生参加市模拟考试,现采取分层抽样的方法从

文、理考生中分别抽取20份和50份数学试卷,进行成绩分析,

得到下面的成绩频数分布表:

分数分组

[0,30)

[30,60)

[60,90)

[90,120)

[120,150]

文科频数

2

4

8

3

3

理科频数

3

7

12

20

8

(1)估计文科数学平均分及理科考生的及格人数(90分为及格分数线);

(2)在试卷分析中,发现概念性失分非常严重,统计结果如下:

文理

失分

概念

15

30

其它

5

20

问是否有90%的把握认为概念失分与文、理考生的不同有关?(本题可以参考独立性检验临界值表:)

<>0.5

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式: ,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】销售某种活虾,根据以往的销售情况,按日需量x(公斤)属于[0,100),[100,200),[200,300),[300,400),[400,500] 进行分组,得到如图所示的频率分布直方图.这种活虾经销商进价成本为每公斤15当天进货当天以每公斤20元进行销售当天未售出的须全部以每公斤10元卖给冷冻库.某水产品经销商某天购进了300公斤这种活虾,设当天利润为Y元.

(1)Y关于x的函数关系式

(2)结合直方图估计利润Y不小于300元的概率

(3)在直方图的日需量分组中,以各组的区间中点值代表该组的各个值,日需量落入该区间的频率作为日需量取该区间中点值的概率,求Y的平均估计值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.

(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考公式:

参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求的值域;

2)求函数的最小正周期及函数的单调区间;

3)将函数的图像向右平移个单位后,再将得到的图像上各点的横坐标变为原来的倍,纵坐标保持不变,得到函数的图像,求函数的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区今年1月,2月,3月患某种传染病的人数分别为424852.为了预测以后各月的患病人数,甲选择了模型,乙选择了模型,其中为患病人数,为月份数,abcpqr都是常数.结果4月,5月,6月份的患病人数分别为545758.

1)求abcpqr的值;

2)你认为谁选择的模型好.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当a=1时,写出的单调递增区间(不需写出推证过程);

(Ⅱ)当x>0时,若直线y=4与函数的图像交于A,B两点,记,求的最大值;

(Ⅲ)若关于x的方程在区间(1,2)上有两个不同的实数根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案