精英家教网 > 高中数学 > 题目详情
的焦点与的左焦点重合,则 (   )
A.-2B.2C.-4D.4
C

试题分析:
根据题意,由于 则左焦点为(-2,0)因此的焦点为,故可知
故可知答案为C.
点评:解决的关键是利用抛物线的焦点坐标来结合对应相等得到p的值,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知动圆C经过点(0,m) (m>0),且与直线y=-m相切,圆C被x轴截得弦长的最小值为1,记该圆的圆心的轨迹为E.
(Ⅰ)求曲线E的方程;
(Ⅱ)是否存在曲线C与曲线E的一个公共点,使它们在该点处有相同的切线?若存在,求出切线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(1) 求抛物线的方程;
(2) 当点为直线上的定点时,求直线的方程;
(3) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P是抛物线上一点,设P到此抛物线准线的距离是d1,到直线的距离是d2,则dl+d2的最小值是(     )
A.B.C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线与抛物线C相交于A,B两点.若AB的中点为(2,2),则直线的方程为_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的准线方程为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点,点是抛物线 的焦点,点是抛物线上的点,则使取最小值时点的坐标为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线C:的焦点坐标为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为坐标原点,从每条曲线上各取两个点,将其坐标记录于表中:










 
(1)求的标准方程;
(2)请问是否存在直线同时满足条件:(ⅰ)过的焦点;(ⅱ)与交于不同两点,且满足.若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案