精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=2px(p>0)与直线2x+my+3=0相交于A,B两点,以抛物线C的焦点F为圆心、FO为半径(O为坐标原点)作⊙F,⊙F分别与线段AF,BF相交于D,E两点,则|AD|•|BE|的值是(  )
A、
2
3
B、
3
2
C、
4
9
D、
9
4
分析:先把直线方程与抛物线方程联立消去y,设A(x1,y1),B(x2,y2),根据韦达定理求得x1x2的值进而根据抛物线定义可知|FA|=x1+
p
2
,|FB|=x2+
p
2
;代入|AD|•|BE|=(|FA|-
p
2
)(|FB|-
p
2
)中即可求得答案.
解答:解:把直线方程与抛物线方程联立消去y得4x2+(12-2m2p)x+9=0,设A(x1,y1),B(x2,y2
则x1x2=
9
4

|AD|•|BE|=(|FA|-
p
2
)(|FB|-
p
2

根据抛物线定义可知|FA|=x1+
p
2
,|FB|=x2+
p
2

∴|AD|•|BE|=(x1+
p
2
-
p
2
)(x2+
p
2
-
p
2
)=x1x2=
9
4

故选D
点评:本题主要考查了直线与圆锥曲线的关系.当涉及抛物线线的焦点的时候,常需用抛物线的定义来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0),F为抛物线C的焦点,A为抛物线C上的动点,过A作抛物线准线l的垂线,垂足为Q.
(1)若点P(0,4)与点F的连线恰好过点A,且∠PQF=90°,求抛物线方程;
(2)设点M(m,0)在x轴上,若要使∠MAF总为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2Px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b(k≠0)与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求证:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,点M(m,0)在x轴的正半轴上,过M的直线l与C相交于A、B两点,O为坐标原点.
(I)若m=1,且直线l的斜率为1,求以AB为直径的圆的方程;
(II)问是否存在定点M,不论直线l绕点M如何转动,使得
1
|AM|2
+
1
|BM|2
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=8x与点M(-2,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若
MA
MB
=0,则k=(  )

查看答案和解析>>

同步练习册答案