精英家教网 > 高中数学 > 题目详情
已知:正方体ABCD-A1B1C1D1 ,AA1=2,E为棱CC1的中点.
(Ⅰ) 求证:B1D1⊥AE;
(Ⅱ) 求证:AC∥平面B1DE.
分析:(Ⅰ)连接BD,则BD∥B1D1.在ABCD是正方形中,AC⊥BD,结合CE⊥BD,可以证出BD⊥面ACE,从而得到BD⊥AE,利用平行线的性质得到B1D1⊥AE.
(II)取BB1的中点F,连接AF、CF、EF.可以证出四边形B1FCE是平行四边形,从而CF∥B1E;然后再证四边形ADEF是平行四边形,可得AF∥ED,结合面面平行的判定定理,得到平面ACF∥平面B1DE. 最后利用面面平行的性质,得到AC∥面B1DE.
解答:解:(Ⅰ)连接BD,则BD∥B1D1
∵ABCD是正方形,∴AC⊥BD.
∵CE⊥平面ABCD,BD?平面ABCD,∴CE⊥BD.
又∵AC∩CE=C,∴BD⊥面ACE.---------------(3分)
∵AE?面ACE,∴BD⊥AE,
∴B1D1⊥AE.---(5分)
(Ⅱ)证明:取BB1的中点F,连接AF、CF、EF.
∵E、F是C1C、B1B的中点,
∴CE∥B1F且CE=B1F
∴四边形B1FCE是平行四边形,
∴CF∥B1E.
∵正方形BB1C1C中,E、F是CC、BB的中点,
∴EF∥BC且EF=BC
又∵BC∥AD且BC=AD,
∴EF∥AD且EF=AD.
∴四边形ADEF是平行四边形,可得AF∥ED,
∵AF∩CF=C,BE∩ED=E,
∴平面ACF∥平面B1DE.  又∵AC?平面ACF,
∴AC∥面B1DE.------(10分)
点评:本题以正方体为平台,考查证明了线面垂直和线面平行,着重考查了空间直线与平面平行的判定与性质和面面平行的判定与性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求证:B1D1⊥AE;
(2)求证:AC∥平面B1DE;
(3)(文)求三棱锥A-BDE的体积.
(理)求三棱锥A-B1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位正方体ABCD-A1B1C1D1,E分别是棱C1D1的中点,试求:
(1)AE与平面BB1C1C所成的角的正弦值;
(2)二面角C1-DB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在正方体ABCD-A1B1C1D1中,E、F分别是D1D、BD的中点,G在棱CD上,且CG=
14
CD.
(I)求证:EF⊥B1C;
(Ⅱ)求EF与C1G所成角的余弦值;
(Ⅲ)求二面角F-EG-C1的大小(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河东区一模)已知:正方体ABCD-A1B1C1D1的棱长为1.
(Ⅰ)求棱AA1与平面A1BD所成的角;
(Ⅱ)求二面角B-A1D-B1的大小;
(Ⅲ)求四面体A1-BB1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位正方体ABCD-A1B1C1D1对棱BB1,DD1上有两个动点E、F,BE=D1F,设EF与面AB1所成角为α,与面BC1所成角为β,则α+β的最大值为
 

查看答案和解析>>

同步练习册答案