精英家教网 > 高中数学 > 题目详情

【题目】四棱锥中,底面是边长为2的菱形,的中点,平面与平面所成的角的正弦值为

(1)在棱上求一点,使平面

(2)求二面角的余弦值.

【答案】1)见解析(2

【解析】

1)分别取PDPC的中点FG,由三角形中位线定理及平行公理可得四边形AEGF为平行四边形,得AFEG,由线面平行的判定可得AF∥平面PEC,则PD的中点F即为所求;

2)由已知可得∠CPE即为PC与平面PAB所成的角,求解直角三角形得到PA2,过DBA的延长线的垂线,垂足为H,过HPE的垂线,垂足为K,连接KD,可得∠DKH即为所求的二面角的平面角,然后求解直角三角形得答案.

1)分别取PDPC的中点FG,则FGCDAB

∴四边形AEGF为平行四边形,则AFEG,又FG平面PEC

AF∥平面PEC

PD的中点F即为所求;

2)由PA⊥平面ABCD,可得平面PAB⊥平面ABCD

EAB中点,且BC2BE2,∠CBE60°,∴CEAB

∴∠CPE即为PC与平面PAB所成的角,

RtPEC中,,即

解得:PA2

DBA的垂线,垂足为H,过HPE的垂线,垂足为K,连接KD

PA⊥平面ABCD,∴PADH

DHBA,∴DH⊥平面PBA

DHPE,则PE⊥平面DHK,得PEDH

∴∠DKH即为所求的二面角的平面角,

RtDHK中,

由于PEHKEHPA,∴

从而

即二面角DPEA的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中

(1)根据散点图判断,哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)

(2)根据判断结果和表中数据,建立的回归方程;

(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时,烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列.如果数列满足 ,其中,则称的“陪伴数列”.

(Ⅰ)写出数列的“陪伴数列”

(Ⅱ)若的“陪伴数列”是.试证明: 成等差数列.

(Ⅲ)若为偶数,且的“陪伴数列”是,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点M到定点F1-20)和F220)的距离之和为

1)求动点M轨迹C的方程;

2)设N02),过点P-1-2)作直线l,交椭圆C于不同于NAB两点,直线NANB的斜率分别为k1k2,问k1+k2是否为定值?若是的求出这个值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数图像在处的切线方程;

2)证明:

3)若不等式对于任意的均成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a11 ,其中nN*

1,求证:数列{bn}是等差数列,并求出{an}的通项公式.

2,数列{cncn+2}的前n项和为Tn是否存在正整数m,使得对于nN*,恒成立?若存在,求出m的最小值;若不存在,请说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的方程是: ,以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)设过原点的直线与曲线交于 两点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆: 的左右焦点分别 ,过作垂直于轴的直线交椭圆于两点,满足.

(1)求椭圆的离心率.

(2)是椭圆短轴的两个端点,设点是椭圆上一点(异于椭圆的顶点),直线分别与轴相交于两点,为坐标原点,若,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知都是各项不为零的数列,且满足,其中是数列的前项和,是公差为的等差数列.

1)若数列的通项公式分别为,求数列的通项公式;

2)若是不为零的常数),求证:数列是等差数列;

3)若为常数,),),对任意,求出数列的最大项(用含式子表达).

查看答案和解析>>

同步练习册答案